计算二重积分∫∫xcos(x+y)dσ ,D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域计算二重积分xcos(x+y)dσ ,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.∬xcos(x+y)dxdy=[0,π]∫xdx∫[

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:52:31

计算二重积分∫∫xcos(x+y)dσ ,D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域计算二重积分xcos(x+y)dσ ,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.∬xcos(x+y)dxdy=[0,π]∫xdx∫[
计算二重积分∫∫xcos(x+y)dσ ,D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域
计算二重积分xcos(x+y)dσ ,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.
∬xcos(x+y)dxdy=[0,π]∫xdx∫[0,x]cos(x+y)d(x+y)=[0,π]∫xdx[sin(x+y)]︱[0,x]
=[0,π]∫x(sin2x-sinx)dx=[0,π][∫xsin2xdx-∫xsinxdx]=[0,π][-(1/2)∫xd(cos2x)+∫xd(cosx)]
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}
=[0,π]{-(1/2)[xcos2x-(1/2)sin2x]+[xcosx-sinx]}
=[0,π]{-(1/2)xcos2x+(1/4)sin2x+xcosx-sinx}
=-(1/2)π-π=-(3/2)π
我的问题是[0,π][-(1/2)∫xd(cos2x)+∫xd(cosx)]
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}这一步是怎么来的?

计算二重积分∫∫xcos(x+y)dσ ,D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域计算二重积分xcos(x+y)dσ ,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.∬xcos(x+y)dxdy=[0,π]∫xdx∫[
[0,π][-(1/2)∫xd(cos2x)+∫xd(cosx)]
=[0,π]{-(1/2)[xcos2x-∫cos2xdx]+[xcosx-∫cosxdx]}这一步是怎么来的?----分部积分.

计算二重积分∫∫xcos(x+y)dσ ,D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域计算二重积分xcos(x+y)dσ ,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.∬xcos(x+y)dxdy=[0,π]∫xdx∫[ 二重积分x*cos(x+y),其中D是顶点分别为(0,0),(π,0),(π,π)围成的三角形区域.计算二重积分xcos(x+y)dσ ,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.∬xcos(x+y)dxdy=[0,π]∫xdx∫[0,x]cos(x+y)d(x+y)= 计算二重积分∫∫e^(x+y)dσ,D= lxl + lyl 计算二重积分∫∫(x+y)dσ,其中D:{(x,y)|x²+y²≤1}. 利用二重积分的几何意义计算二重积分.∫∫(b-Sqrt(x^2+y^2))dσ,D:x^2+y^2≤a^2,a>0 利用二重积分的几何意义计算二重积分.∫∫Sqrt(1-x^2-y^2)dσ,D:x^2+y^2≤1 求二重积分∫∫xcos(x+y)dσ,其中D是顶点分别为(0,0),(π,0),(π,π)的三角形闭区域 计算二重积分∫∫(x^2+y^2)dσ D:x^2+y^2=4RT 计算二重积分∫∫|y-x^2|dδ D={(x,y)|0 一个关于二重积分的题∫∫xcos(x+y)dσ,其积分区域为三个顶点分别为(0,0),(π,0)(π,π)的三角形区域. 计算二重积分∫∫ |sin(x-y)|dσ,积分区域为0≦x≦y≦2π 计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1 计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2 计算二重积分 ∫∫cos(x+y)dxdy D={(x,y)|0 计算二重积分∫∫(100+x+y)dxdy 其中区域D={(x,y)|0 计算二重积分D∫∫(x+6y)dσ,D是由y=x,y=5x,x=1所围成的区域. 计算二重积分∫∫D e^(x+y)dδ,其中D={(x,y)||x|+|y|= 计算二重积分∫∫D e^(x+y)dδ,其中D={(x,y)||x|+|y|=