已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC),则动点P一定是三角形ABC的什么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:52:29
已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC),则动点P一定是三角形ABC的什么
已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC),则动点P一定是三角形ABC的什么
已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC),则动点P一定是三角形ABC的什么
取AB中点为M,
1/2向量OA+1/2向量OB=向量OM
OP=1/3(1/2向量OA+1/2向量OB+2向量OC)
=1/3(向量OM+2向量OC) ( O是三角形ABC的重心
=1/3(向量OM-4向量OM) ( ∴向量OC=-2向量OM)
=-向量OM
则P是AB边中线的三等分点 (非重心)
请采纳答案,支持我一下.
已知O,A,B是平面上不共线的三点,若点C满足
O是平面上一定点,A,B,C是平面上不共线三点,求p的见相册同名图片
已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2向量AC+向量CB=0,若向量OC=λOA+μOB,(其中λ,μ是
O、A、B是在平面上不共线的三点,若满足向量AC=CB 则= 答案我知道 不知道过程 怎么理解的O、A、B是在平面上不共线的三点,若点C满足向量AC=CB 则向量OC= 答案我知道 不知道过程 怎么理解的A OA
已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2倍的向量AC+向量CB=0 则oc=
已知O,A,B是平面内不共线的三点,满足向量OP=A*向量OA+B*向量OB,则P,A,B三点共线的充要条件是A+B=?
已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量OC](λ∈R且λ≠0),O为
已知O,A,B,P是平面上四点,且向量OP=mOA+nOB(1)若m+n=1求证A,B,P三点共线
为什么 已知A,B,C是平面上不共线的三点,O是三角形ABC的重心,动点P满足向量OP=1/3(1/2向量OA+1/2向量OB+2向量OC),则点P一定为AB边的三等分点.若P不是三等份点,是什么点?
已知O,A,B是平面上不共线三点,设P为线段AB垂直平分线上任一点,若向量OA模长7,向量OB模长5则(向量OP)*(向量OA-向量OB)=?
已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满足向量OP=(向量OB+向量OC)/2+λ(向量AB/(|向量AB|cosB)+向量AC/(|向量AC|cosC),已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满
O为平面上的一个定点,A、B、C是该平面上不共线的三点,若(OB-OC)•(OB+OC-2OA)=0,则△ABC是A.以AB为底边的等腰三角形 B.以BC为底边的等腰三角形C.以AB为斜边的直角三角形D.以BC为斜边的直角三
已知平面外一点p和平面内不共线的三点ABC,EFG分别在PA,PB,PC上,若延长EF,EG,FG,分别与平面交于HIJ三点,则HIJ三点关系是()A,钝角三角形 B,锐角三角形 C,直角三角形 D,成一直线
已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2倍的向量AC+向量CB=0 ..(1)用向量AB,OB表示向量OC;(2)若点D是OB的中点,证明四边形OCAD是梯型.
平面向量的基本定理及坐标表示一、向量e1、e2是平面内一组基底,若ke1+he2恒成立,则k= h= O是平面上一定点,A、B、C是平面上不共线的三点,动点满足向量OP=向量OA+K(向量AB/向量AB的模+向量AC/向
A、B、C三点共线,O为平面上一点,已知向量OC= λ 向量OA+μ 向量OB,求λ+ μ的值.
已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC),则动点P一定是三角形ABC的什么
平面向量求三点共线已知a,b是两个不共线向量,若AB=a+b,BC=2a+8b,CD=3(a-b),求证A、B、C三点共线(上面的字母都是向量,打错,是证A、B、D共线