设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:38:52

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导
设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导
lim(x→0)f(x)/x存在
说明x→0,lim f(x)=f(0)=0
所以
lim f(x)/x=lim [f(x)-f(0)]/x=f'(0)
所以在x=0处可导

左极限等于右极限等于函数值就可以证明了!lim(x趋于0)f(x)/x存在,则lim(x趋于0){f(0+x)-f(0)}/(x-0)存在,f(x)在x=0处可导

设f(x)在x=0连续,且lim(x+sinx)/ln[f(x)+2]=1x趋近于0,则f'(0)? 设F(x)在x=0处连续,已知当x趋近于0时,lim(1+f(x)/x)^1/sinx=e^2,求当x趋近于0时,limf(x)/x^2 设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导 设f(x)在x=1处具有连续导数,且f ‘(1)=3,求f '(cos√x),x趋近于0+ 设f(x)在x=0处连续,且x趋近于0时f(x)/x极限存在,证明f(x)在x=0处连续可导 设函数f(x)在x=1处可导,且df(x)/dx=1,则lim[f(1+2x)-f(1)]/x=?(x趋近于0)设函数f(x)在x=1处可导,且df(x)/dx=1,则lim[f(1+2x)-f(1)]/x=?(x趋近于0) 设函数f(x)在x=2处连续,且lim(x→2)f(x)/(x-2)(x→2)=3,求f'(2). 设函数t(x)在点X=6处连续,且f(6)= -5 则 lim f(x)=?lim是 x->6 若f(x)在x=0处连续,且当x趋近于0时,limf(x)/x 存在,证明f(x)在x=0处可导. 设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值. 设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值. 设f(x)在x=1处连续,且lim(x趋向于1时)f(x)/(x-1)=2,则f'(1)=___ 证明:设f(x)在x=0连续,且lim(x→0) (f(x)/x)=1,则必有f'(0)=1 设函数f(x)具有连续导数,且当x趋近于0时极限[F(x)/x+ln(1+x)/x^2]=3/2求f(0)和在0处的导数值 设f(x)有二阶连续导数 且f(0)=f'(0)=0 f''(0)>0 又设u=u(x)是曲线y=f(x)在点(x,f(x))处的切线在x轴的截距则lim(x→0) x/u(x)=?求截距这个很简单了,直接就是u(x)=[xf'(x)-f(x)]/f'(x)然后我得到lim(x→0) x/u(x)=lim(x→ 设函数f(x)在x=2处连续,且lim(x)/(x-2)(x→2)=2,求f'(2). 设f(x)在x=0处的导数为A,则..设f(x)在x=0处的导数为A,则x趋近于2时,lim[f(4-x^2)-f(0)]/2-x 若函数f(x)在x=0处连续,且lim{x趋近0}f(x)/x存在,试证f(x)在x=0处可导