设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:44:47
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)dx
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)dx
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)dx
记:g(x)=S[a,x]tf(t)dt-[(a+x)/2]S[a,x]f(t)dt,a
设函数y=f(x)在[a,b]上连续且单调,证明其反函数在相应区间上也连续且单调
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
『紧急』 设函数f(x)在[a,b]上连续,且f(x)>0,证明:()(x)=§(a,x)f(t)dt+2§(x,b)f(t)dt在[a,b]上单...『紧急』 设函数f(x)在[a,b]上连续,且f(x)>0,证明:()(x)=§(a,x)f(t)dt+2§(x,b)f(t)dt在[a,b]上单调减少;(2)在(a,b)
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
函数f(x)在闭区间[a,b]上严格单调且连续,f(a)=A,f(b)=B,证明f([a,b])=(A,B)
高数证明单调性设函数f(x)在区间[a,b]上连续,在(a,b)内f''(x)>0,证明:φ(x)=[f(x)-f(a)]/(x-a)在(a,b)内单调增
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]上单调增加
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)dx
设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)dx
定积分的证明设函数f(x)在[a,b]上连续且单调递增,求证:∫[b,a] xf(x)dx≥[(a+b)/2]∫[b,a] f(x)dx