已知n维向量组α1 α2...αS(s≦n)线性无关,β是任意的n维向量,证明:向量组β,α1,α2...αS中至多有一个向量能由其前面的向量线性表示

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:28:52

已知n维向量组α1 α2...αS(s≦n)线性无关,β是任意的n维向量,证明:向量组β,α1,α2...αS中至多有一个向量能由其前面的向量线性表示
已知n维向量组α1 α2...αS(s≦n)线性无关,β是任意的n维向量,证明:向量组β,α1,α2...αS中
至多有一个向量能由其前面的向量线性表示

已知n维向量组α1 α2...αS(s≦n)线性无关,β是任意的n维向量,证明:向量组β,α1,α2...αS中至多有一个向量能由其前面的向量线性表示
假设有两个向量ai,aj(i < j)能由其前面的向量线性表示,那么β能由a1,a2,.ai线性表示,
推出aj能由a1,a2.aj-1 线性表示,矛盾.

已知n维向量组α1 α2...αS(s≦n)线性无关,β是任意的n维向量,证明:向量组β,α1,α2...αS中至多有一个向量能由其前面的向量线性表示 已知a1,a2,…,as是互不相同的数,n维向量ai=(1,ai,ai^2,…,ai^n-1)^T(i=1,2,…,s),求α1,α2…αs的秩 n维向量组α1,α2,…,αs线性相关的充要条件是 ( )A.α1,α2,…,αs中有一零向量B.α1,α2,…,αs中任意两个向量的分量成比例C.α1,α2,…,αs中有一个向量是其余向量的线性组合D.α1,α2,…,αs中任意 n维向量与矩阵乘法.一个矩阵与一组向量的乘法若向量组α1.αs,为n维列向量,设该向量组为B,A为mxn的矩阵,则BA=(Aα1,Aα2,.Aαs).BA的结果怎么的出来的?我脑子转不过来. α为n维列向量,A为m*n矩阵,α1,α2.αs线性无关,A的秩为n,那么(Aα1,Aα2.Aαs)无关吗 已知向量组α1α2...αs(s>1)线性无关,向量β1=α1+2α2 β2=α2+α3...βs-1=αs-1+αs βs=αs证明β1,β2,β3,βs线性相关我是这么做的:令B= (β1,β2,β3,βs)A=(α1,α2,α3,αs)B=AK12 12 1 K= ...K为s行s列的方阵 ,由A 已知α1...αs的秩为r,证明α1.αs中任意r个线性无关向量构成极大无关组 高一平面向量题1.已知三角形ABC面积为S,已知向量AB点积向量BC=2.若S=3/4|向量AB|,求|向量AC|的最小值2.已知|向量a|+|向量b|=1,向量a,b夹角为60度.向量m=向量a + x向量b,向量n=向量a,向量m垂直于向 设A为n阶可逆矩阵,α1,α2,…,αs(s≤n)都为n维非零列向量,且αiTATαj=0i≠j,证明向量组α1,α2,……,αs线性无关~ 向量组α1,α2...αr秩为r1,向量组β1,β2.βs秩为r2,向量组α1,α2...αrβ1,β2.βs为r3求证r3 设向量组A(α1,α2...αm)为n维向量组,已知m>n,则向量组的线性相关与否?求给出解答过程及原理,不要只给一个答案, 线性代数的数学题一.已知向量组α1,α2,…,αs线性无关,β1=t1α1+t2α2,β2=t1α2+ t2α3,…,βs=t1αs+t2α1,试问t1,t2满足什么条件时,β1,β2,…,βs线性无关.二.已知向量组α1,α2,…,αs的秩为s.β1=t1α 设向量组1:α1,α2,…αs 可由 向量组2β1,β2,β3,.βs线性表出问一下向量组1 线性无关,向量组1 线性相关时r和s的关系 以及向量组2线性无关,向量组2 线性相关时r和s的关系 设n维向量组 a1,a2...,as,as+1(s 关于线性代数矩阵与向量的疑问设α1,α2,…,αs 都是n维向量,A是m×n矩阵,下列选项中正确的是( ).(A) 若α1,α2,…,αs 线性相关,则Aα1,Aα2,…,Aαs线性相关.(B) 若α1,α2,…,αs 线性相关,则Aα1,Aα2,… 向量组α1,α2,α3.αs线性无关的充要条件是A.α1,α2,α3.αs均不是零向量B.α1,α2,α3.αs中任意两个向量都不成比例 C.α1,α2,α3.αs中任一个向量均不能由其余S-1个向量线性表示D.α1,α2,α3.αs一定是正 设a1,a2,...as是n维向量组,如果s>n,则向量组 a1,a2,...as是线性? 已知α1,α2,…αs的秩为r,证明:α1,α2,…αs中任意r个线性无关的向量都构成它的一极大线性无关组