设n维向量组 a1,a2...,as,as+1(s

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:51:08

设n维向量组 a1,a2...,as,as+1(s
设n维向量组 a1,a2...,as,as+1(s

设n维向量组 a1,a2...,as,as+1(s
a1,a2...,as,as+1(s

题目没写完

设a1,a2,...as是n维向量组,如果s>n,则向量组 a1,a2,...as是线性? 设n维向量组 a1,a2...,as,as+1(s 设n维向量组a1,a2,...,as的秩等于r,如果r 设n维向量组a1,a2,...,as的秩等于r,如果任何n维向量都可用a1,a2,...as线性表示,则r=n这句话为什么对? 单选 n维向量组a1, a2,……as(3≤s≤n)线性相关的充要条件是( )A a1,a2,……,as中任意两个向量都线性相关 B a1,a2,……,as中有两个向量成比例 C a1,a2,……,as至少一个向量可 设n维向量组a1,a2,...,as的秩等于r,如果r=s,则任何n维向量都可用a1,a2,...as唯一线性表示,这句话为什么不正确 设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2] 设a1,a2,...as均为n维列向量,A是m×n矩阵,若a1,a2…,as线性无关,则Aa1,Aa2,……,Aas线性无关是错的? 向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为 向量组a1,a2,---,as线性无关,向量组b1,b2,bs线性无关的充分必要条件为 A向量组a1,a2,---,as可由向量组b1,b2,bs线性表示B向量 有关线性代数的问题,望高人指教指教.设a1,a2,a 为n维向量组,且秩(a1,a2,a)=r,则() 设n维向量a1,a2.aS的秩为r则A.向量组中任意r-1个向量都线性无关 B.向量组中任意r个向量均线性无关C.向量组中任意r+1个向量军线性无关 D,向量组中的向量个数必大于r 设n维列向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为A,两个向量组等价.B,矩阵A=(a1,a2,an)与矩阵B=(b1,b2,bs)等价.为什么选B 设n维向量组a1,a2,a3线性无关,判断a1+2a2,2a2+3a3,a1+2a2+3a3的相关性 n维向量a1,a2.as线性无关,β为一n维向量,则()A a1,a2..as,β线性无关B,β一定能被a1,a2..as线性表出 C β一定不能被a1,a2..as线性表出 D当s=n时,β一定能被a1,a2..as线性表出 设A为n阶矩阵,a1,a2,a3是n维列向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,Aa3=a2+a3.证明A和(a1,a2,a3)是一个矩阵? 设a1,a2...as和b1,b2...bs是两个线性无关的n维向量组,并且每个a1和b1都正交,证明a1...as,b1...bs无关 设a1,a2为n维列向量,A为n阶正交矩阵,证明:(1)[Aa1,Aa2]=[a1,a2] (2){Aa1}={a1} 设n维向量组a1,a2,a3,...,am相性相关,则组中有什么样的关系