设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:46:04
设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?
设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?
设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?
设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?
sin(a b)=12/13
sin(a-b)=-4/5
cos2b=cos[(a b)-(a-b)]=cos(a b)cos(a-b) sin(a b)sin(a-b)=-15/65-48/65=-63/65
0<α<β<π/2
0<α+β<π
-π/2<α-β<0
cos(α+β)=-5/13
sin(α+β)=12/13
cos(α-β)=3/5,
sin(α-β)=-4/5,
cos2β=cos[(α+β)-(α-β)]
=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)
=-5/13*3/5+12/13*(-4/5)
=-15/65-48/65
=-63/65
设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?
设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?设0<α<β<π/2,且cos(α+β)=-5/13,cos(α-β)=3/5,则cos2β=?
设α,β,γ∈(0,π/2),且sinβ+sinγ=sinα,cosα+cosγ=cosβ,则β-α=
设向量a=(cosα,sinα),b=(cosβ,sinβ),且0
设向量a=(cosα,sinα),b=(cosβ,sinβ),且0
设向量a=(cosα,sinα),b=(cosβ,sinβ),且0
设sinα>0且cosα
一道三角函数的填空题,求详解设α,β,γ∈(0,π/2),且sinα+sinβ=sinγ,cosβ+cosγ=cosα,则β+α=_____π/3___
设α,β,γ∈(0,π/2),且sinα+sinγ-sinβ=0,cosβ+cosγ-cosα=0,求α-β的值
设α∈(0,π/3),β(π/6,π/2),且α,β满足5√3sinα+5cosα=8√2sinβ+√6cosβ =2 求cos(α+β )设α∈(0,π/3),β(π/6,π/2),且α,β满足53sinα+5cosα=8 /2sinβ+/6cosβ =2 求cos(α+β )
已知cosα=1/7,cos(α-β)=13/14,且0< β <α<π/2 .则β=
已知cosα=1/7,cos(α-β)=13/14,且0<β<α<π/2,求sinβ
设向量a=(cosα,sinα),b=(cosβ,sinβ),其中0<α<β<π,若丨2a+b丨=丨a-2b设向量a=(cosα,sinα),向量b=(cosβ,sinβ).其中0
设平面内有两个向量a=(cosα,sinα),b=(cosβ,sinβ),且0<α<β<π(1)证明:(a+b)⊥(a-b)(2)若两个向量ka+b与a-kb的模相等,求β-α的值(k≠0,k属于R)
设平面内有两个向量a=(cosα,sinα),b=(cosβ,sinβ),且0<α<β<π(1)证明:(a+b)⊥(a-b)(2)若两个向量ka+b与a-kb的模相等,求β-α的值(k≠0,k属于R)
设α∈(0,π/3) β∈(π/6,π/2) 且5/3sinα+5cosα=8 ,/2sinβ+/6cosβ =2 求cos(α+β )设α∈(0,π/3) β∈(π/6,π/2) 且5/3sinα+5cosα=8 ,/2sinβ+/6cosβ =2 求cos(α+β )的值且5√3sinα+5cosα=8 ,√2sinβ+√6cosβ =2看
设α是第三象限的角,tanα=-4/3,且sinα/2<cosα/2,则cosα/2= 证明,过程
设cos(α-β/2)=-3/5,sin(α/2-β)=2/3,且π/2