锐角三角形ABC满足a/b+b/a=6cosC求tanC/tanA+tanC/tanB=__
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 02:33:43
锐角三角形ABC满足a/b+b/a=6cosC求tanC/tanA+tanC/tanB=__
锐角三角形ABC满足a/b+b/a=6cosC
求tanC/tanA+tanC/tanB=__
锐角三角形ABC满足a/b+b/a=6cosC求tanC/tanA+tanC/tanB=__
∵ a/b+b/a=6cosC (得到a²+b²=6abcosC)
∴ (a²+b²)/ab=6(a²+b²-c²)/(2ab)=3(a²+b²-c²)/ab
∴c²=2(a²+b²)/3
tanC/tanA+tanC/tanB
=tanC(cosA/sinA+cosB/sinB)
=tanC*(cosAsinB+cosBsinA)/(sinAsinB)
=tanC*sin(A+B)/(sinAsinB)
=sinCsin(A+B)/[sinAsinBcosC]
∵ A+B=π-C,∴ sin(A+B)=sinC
=sin²C/(sinAsinBcosC)
利用正弦定理
=c²/(abcosC)
=6c²/(a²+b²)
=6*(2/3)
=4
∵a/b+b/a=6cosC,∴结合正弦定理,容易得出:sinA/sinB+sinB/sinA=6cosC,
∴[(sinA)^2+(sinB)^2]/(sinAsinBcosC)=6。······①
在△ABC中,有恒等式:(sinA)^2+(sinB)^2-(sinC)^2=2sinAsinBcosC,
∴(sinA)^2+(sinB)^2=(sinC)^2+2sinA...
全部展开
∵a/b+b/a=6cosC,∴结合正弦定理,容易得出:sinA/sinB+sinB/sinA=6cosC,
∴[(sinA)^2+(sinB)^2]/(sinAsinBcosC)=6。······①
在△ABC中,有恒等式:(sinA)^2+(sinB)^2-(sinC)^2=2sinAsinBcosC,
∴(sinA)^2+(sinB)^2=(sinC)^2+2sinAsinBcosC,
∴[(sinA)^2+(sinB)^2]/(sinAsinBcosC)=(sinC)^2/(sinAsinBcosC)+2。······②
由①、②,得:(sinC)^2/(sinAsinBcosC)+2=6,
∴(sinC)^2/(sinAsinBcosC)=4,
∴[sinC/(sinAsinB)]tanC=4,
∴tanC[sin(180°-A-B)/(sinAsinB)]=4,
∴tanC[sin(A+B)/(sinAsinB)]=4,
∴tanC[(sinAcosB+cosAsinB)/(sinAsinB)]=4,
∴tanC(cosB/sinB+cosA/sinA)=4,
∴tanC(1/tanA+1/tanB)=4,
∴tanC/tanA+tanC/tanB=4。
收起