列举一些生活中的数学问题(5个以上) 初二左右水平多了也行 最近就要 快

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:37:41

列举一些生活中的数学问题(5个以上) 初二左右水平多了也行 最近就要 快
列举一些生活中的数学问题(5个以上) 初二左右水平
多了也行 最近就要 快

列举一些生活中的数学问题(5个以上) 初二左右水平多了也行 最近就要 快
1.请问钟表从零点开始,转一周,12个小时,时针、分钟、秒针三针重合的次数是几次?并说出重合的位置.
2.
三角形ABC的边BC,CA,AB上分别有点D,E,F,且三角形AEF,BFD,CDE的内切圆与三角形EDF的内切圆均外切.设DE.EF.FD上的切点分别是P,Q,R,求证:CP,AQ,BR共点.
3.光子火箭的飞行目的地为银河系中心,已知银河系中心离地球的距离为R=3.4*10^4光年,火箭在前一半旅程以加速度a'=10m/s^2(相对火箭的静止系)作匀加速运动,而后一半的旅程则以同样的加速度作减速运动,火箭到达目的地时的静止质量M'(静止)=1.0*10^6kg,试问:火箭发动机在开始发射时至少需要多大功率 三个人住店,总共房费是30元,每人交房费10元.
旅店打折,老板返还5元.
伙计给每个房客返还1元,伙计自己昧了2元.
实际上每个房客交了9元,三九27,再加上伙计昧下的2元,总共是29元,请问其余的1元钱去哪了?

1.请问钟表从零点开始,转一周,12个小时,时针、分钟、秒针三针重合的次数是几次?并说出重合的位置。
2.
三角形ABC的边BC,CA,AB上分别有点D,E,F,且三角形AEF,BFD,CDE的内切圆与三角形EDF的内切圆均外切。设DE.EF.FD上的切点分别是P,Q,R,求证:CP,AQ,BR共点。
3.光子火箭的飞行目的地为银河系中心,已知银河系中心离地球的距离为...

全部展开

1.请问钟表从零点开始,转一周,12个小时,时针、分钟、秒针三针重合的次数是几次?并说出重合的位置。
2.
三角形ABC的边BC,CA,AB上分别有点D,E,F,且三角形AEF,BFD,CDE的内切圆与三角形EDF的内切圆均外切。设DE.EF.FD上的切点分别是P,Q,R,求证:CP,AQ,BR共点。
3.光子火箭的飞行目的地为银河系中心,已知银河系中心离地球的距离为R=3.4*10^4光年,火箭在前一半旅程以加速度a'=10m/s^2(相对火箭的静止系)作匀加速运动,而后一半的旅程则以同样的加速度作减速运动,火箭到达目的地时的静止质量M'(静止)=1.0*10^6kg,试问:火箭发动机在开始发射时至少需要多大功率 三个人住店,总共房费是30元,每人交房费10元.
旅店打折,老板返还5元.
伙计给每个房客返还1元,伙计自己昧了2元.
实际上每个房客交了9元,三九27,再加上伙计昧下的2元,总共是29元,请问其余的1元钱去哪了?

收起

1.请问钟表从零点开始,转一周,12个小时,时针、分钟、秒针三针重合的次数是几次?并说出重合的位置。 2. 三角形ABC的边BC,CA,AB上分别有点D,E,F,且三角形AEF,BFD,CDE的内切圆与三角形EDF的内切圆均外切。设DE.EF.FD上的切点分别是P,Q,R,求证:CP,AQ,BR共点。 3.光子火箭的飞行目的地为银河系中心,已知银河系中心离地球的距离为R=3.4*10^4光年,火箭...

全部展开

1.请问钟表从零点开始,转一周,12个小时,时针、分钟、秒针三针重合的次数是几次?并说出重合的位置。 2. 三角形ABC的边BC,CA,AB上分别有点D,E,F,且三角形AEF,BFD,CDE的内切圆与三角形EDF的内切圆均外切。设DE.EF.FD上的切点分别是P,Q,R,求证:CP,AQ,BR共点。 3.光子火箭的飞行目的地为银河系中心,已知银河系中心离地球的距离为R=3.4*10^4光年,火箭在前一半旅程以加速度a'=10m/s^2(相对火箭的静止系)作匀加速运动,而后一半的旅程则以同样的加速度作减速运动,火箭到达目的地时的静止质量M'(静止)=1.0*10^6kg,试问:火箭发动机在开始发射时至少需要多大功率 三个人住店,总共房费是30元,每人交房费10元.旅店打折,老板返还5元.伙计给每个房客返还1元,伙计自己昧了2元.实际上每个房客交了9元,三九27,再加上伙计昧下的2元,总共是29元,请问其余的1元钱去哪了?

收起

数学

梯子——勾股定理

1.请问钟表从零点开始,转一周,12个小时,时针、分钟、秒针三针重合的次数是几次?并说出重合的位置。
2.
三角形ABC的边BC,CA,AB上分别有点D,E,F,且三角形AEF,BFD,CDE的内切圆与三角形EDF的内切圆均外切。设DE.EF.FD上的切点分别是P,Q,R,求证:CP,AQ,BR共点。
3.光子火箭的飞行目的地为银河系中心,已知银河系中心离地球的距离为...

全部展开

1.请问钟表从零点开始,转一周,12个小时,时针、分钟、秒针三针重合的次数是几次?并说出重合的位置。
2.
三角形ABC的边BC,CA,AB上分别有点D,E,F,且三角形AEF,BFD,CDE的内切圆与三角形EDF的内切圆均外切。设DE.EF.FD上的切点分别是P,Q,R,求证:CP,AQ,BR共点。
3.光子火箭的飞行目的地为银河系中心,已知银河系中心离地球的距离为R=3.4*10^4光年,火箭在前一半旅程以加速度a'=10m/s^2(相对火箭的静止系)作匀加速运动,而后一半的旅程则以同样的加速度作减速运动,火箭到达目的地时的静止质量M'(静止)=1.0*10^6kg,试问:火箭发动机在开始发射时至少需要多大功率 三个人住店,总共房费是30元,每人交房费10元.
旅店打折,老板返还5元.
伙计给每个房客返还1元,伙计自己昧了2元.
实际上每个房客交了9元,三九27,再加上伙计昧下的2元,总共是29元,请问其余的1元钱去哪了?

收起

时钟的时针、分针和秒钟一天重合12次,分别是1:05:05, 2:10:10,3:16:16,4:21:21, 5:27:27 , 6:32:32 , 7:38:38 , 8:43:43 , 9:49:49 , 10:54:54 , 11:59:59 , 0:0:0

小明和小刚一起回家一个往东南方向一个往西南都是40千米/分钟,小明走了15分钟,小刚走了20分钟,他们家相距多远?(勾股定理)

轮船顺流航行50千米所需时间和逆流航行40千米所需时间相同,已知水流速度为2千米每小时,求轮船在静水中速度?

抽屉原理和六人集会问题
“任意367个人中,必有生日相同的人。”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
......
大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:
“把...

全部展开

抽屉原理和六人集会问题
“任意367个人中,必有生日相同的人。”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
......
大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

收起

列举一些生活中的数学问题(5个以上) 初二左右水平多了也行 最近就要 快 列举一些生活中的凝华、升华现象 生活中的数学问题 帮忙想想有哪些导电体和非导电体麻烦列举一些生活中比较常见的导电体和非导电体各列举5个及以上谢谢 有关《装在套子里的人》的问题列举现代生活中的“套子”现象.生活和思想方面各5个事例.通过分析事例得出结论. 人们有时要利用惯性,有时要防止惯性带来的危害,试分别列举生活中的例子(4个以上) 求5个生活中的数学问题保险率,水电费之类的 找一个与数学有关的东西,能说明生活中的一些数学现象并作出说明(400字以内)一定是实物。最好400字以上 请列举磁化的害处(至少3个生活中的实例). 试列举生活中常见的一些溶液,说出其中的溶质和溶剂.(10条) 急需实际一些生活中的例子请列举生活中,增大有益摩擦的例子. 清列举 生活中的省力杠杆(2个)费力杠杆(2个),等臂杠杆(2个) 《生活中的数学》举例说明音乐与数学的关系.(300字以上) 写一篇列举有关数学生活问题方面的文章 (不少于600字) 也不要太多 生活中的一些有趣的图形或标志;生活中的有趣的数学现象或问题.图形或标志要有图片啊 【最好不少于5种】 问题嘛、写下就行【最好不少于5种】 有多少写多少 小学5年级数学小论文(利用学过的数学知识解决生活中的问题) 生活中的数学建模问题的论文 数学问题在实际生活中的运用