已知椭圆E:x2/a2+y2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E与A,B两点若AB中点坐标为(-1,1)则E的方程为.有没有简便方法?参数方程可以解吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:40:14
已知椭圆E:x2/a2+y2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E与A,B两点若AB中点坐标为(-1,1)则E的方程为.有没有简便方法?参数方程可以解吗?
已知椭圆E:x2/a2+y2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E与A,B两点若AB中点坐标为(-1,1)则E的
方程为.
有没有简便方法?参数方程可以解吗?
已知椭圆E:x2/a2+y2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E与A,B两点若AB中点坐标为(-1,1)则E的方程为.有没有简便方法?参数方程可以解吗?
题目有误
AB所在直线为y=-1/4x+3/4
x^2/a^2+y^2/b^2=1
设A(x1,y1),B(x2,y2)
x1^2/a^2+y1^2/b^2=1.1式
x2^2/a^2+y2^2/b^2=1.2式
2式-1式
(x2-x1)(x2+x1)/a^2+(y2-y1)(y2+y1)/b^2=0
AB中点坐标为(-1,1)
∴x2+x1=-2
y2+y1=2
y2-y1=k(x2-x1)=-1/4(x2-x1)
∴-2/a^2+2*(-1/4)/b^2=0
1/a^2+1/4b^2=0
这里解不下去了,可能是AB中点坐标为(-1,1)不对,如果是(1,1)就行
AB所在直线为y=-1/2x+3/2
∴x2+x1=2
y2+y1=2
y2-y1=k(x2-x1)=-1/2(x2-x1)
∴2/a^2+2*(-1/2)/b^2=0
1/a^2-1/2b^2=0
a^2=2b^2
c=3
b^2=c^2=9
a^2=18
方程为x^2/18+y^2/9=1
已知椭圆C1:x2 a2 + y2 b2 =1(a>b>0)椭圆C2
急已知双曲线x2/a2-y2/b2=1的离心率为根号6/2,椭圆x2/a2+y2/b2=1的离心率为
已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为
已知椭圆E:x2/a2+y2/b2=1(a,b>0)的焦点坐标为F1(-2,0),点M(-2,√2)在椭圆E上,求椭圆E的方程
已知椭圆x2/a2+y2/b2的离心率为根号2/2,其焦点在圆x2+y2=1球椭圆方程
已知椭圆x2/a2+y2/b2=1与椭圆x2/25+y2/16=1有相同的长轴椭圆x2/a2+y2/b2=1的短轴长与椭圆y2/21+x2/9=1的短轴长相等,则求a2和b2的值?
已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1...已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1(y>=0)内切于矩形ABCD,且CD交于y轴于点G,点P是半圆x2+y2=b2(y>=0
已知椭圆a2/X2+Y2/b2=1(a>b>0)的离心率e=根号3/2,连接椭圆的四个顶点得到的菱形的面积为4求椭圆方程
已知椭圆c:x2/a2 y2/b2=1(ab0)顺次连接椭圆c的四个顶点,所得到四边形的内切圆与轴的两交点正好是长轴的两个三等分点,则椭圆的离心率e等于?
已知椭圆x2/a2+y2/b2=1(a>b>0)的右焦点为F2(3,0)离心率为e 若e=根号3/2,求椭圆方程
已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作
已知椭圆x2/a2+y2/b2=1的离心率e=根号3/2,且短半轴b=1,F1,F2为其左右焦点,P是椭圆上的动点求|PF1| |PF2|的取值范围
已知过椭圆x2/a2+y2/b2=1(a>0,b>0)的右焦点f且斜率是1的直线交椭圆于A.B两点,若向量AF=2FB,则e为?
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的左、右顶点的坐标分别为A(-2,0) B(2,0).离心率e=√3/2 (1)求椭圆C的方程
已知椭圆 x2/a2+y2/b2=1上任意一点A ,F1和F2为左右焦点,向量AF1垂直于F1F2,向量AF1与AF2的乘积为c^2,则椭圆的离心率e=
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为e=√3/2,且过点(√3,1/2).(1)求椭圆C的标准方程...已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为e=√3/2,且过点(√3,1/2).(1)求椭圆C的标准方程:(2
已知椭圆E:x2/a2+y2/b2=1(a>b>0)的右焦点为F,y轴右侧的点A在椭圆E上运动,直线MA与圆C:x2+y2=b2相切于点M(x0,y0).(1) 求直线MA的方程;(2)求证:/AF/+/AM/为定值. 求答案~~~
求椭圆(x2/a2)+(y2/b2)=1内接矩形的最大面积.