在三棱锥P-ABC中,AP=a,AB=AC=sqrt(2)a,∠PAB=∠PAC=45°,求证:AP⊥平面PBC.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:59:49

在三棱锥P-ABC中,AP=a,AB=AC=sqrt(2)a,∠PAB=∠PAC=45°,求证:AP⊥平面PBC.
在三棱锥P-ABC中,AP=a,AB=AC=sqrt(2)a,∠PAB=∠PAC=45°,求证:AP⊥平面PBC.

在三棱锥P-ABC中,AP=a,AB=AC=sqrt(2)a,∠PAB=∠PAC=45°,求证:AP⊥平面PBC.
因为∠PAB=∠PAC
PA=PA
AB=AC
所以△PAB≌△PAC
所以PB=PC
则PB=PC=√(PA^2+AB^2-2PA*ABcos∠PAB)
=√(a^2+2a^2-2*a*a√2*√2/2)
=a
因为PB^2+PA^2=a^2+a^2=2a^2
AB^2=2a
所以PB^2+PA^2=AB^2
所以∠APB=90°
即PA⊥PB
同理PA⊥PC
因为
PB,PC在平面PBC上
所以AP⊥平面PBC

由余弦定理知:PB=sqrt( AP^2 + AB^2 - 2·AP·AB·cos ∠PAB)=a
cos ∠APB=(AP^2 + PB^2 - AB^2) / (2·AP·PB) =0
所以∠APB=90
那么AP⊥PB
同理可证AP⊥PC
因此AP⊥平面PBC

在三棱锥P-ABC中,AP=a,AB=AC=sqrt(2)a,∠PAB=∠PAC=45°,求证:AP⊥平面PBC. 已知三棱锥p abc中,如图,在三棱锥P-ABC中AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥A...已知三棱锥p abc中,如图,在三棱锥P-ABC中AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC,(1)求证PC⊥AB(2)求二面角B-AP-C的余弦值 RR在棱锥P-ABC中,已知PA⊥平面ABC,BC⊥AC,∠ABC=30°,AC=AP=.求:1.三棱锥的体积.2.二面角P-BC-A的度数AC=AP=2 13.在三棱锥P-ABC中,PA=a,PB=b,PC=c,且a^2+b^2+c^2=ab+bc+ac,则点P在平面ABC上的射影为三角形ABC的()A.内心 B.外心 C.重心 D.垂心14.在第13题中,三棱锥P-ABC的体积为V,E,F,G分别在侧棱AP,BP,CP上,且AE=1/5a,BF=3 在三棱锥P-ABC中,PC垂直面ABC,AB=BC=CA=PC,求二面角B-AP-C的余弦值 在三角形ABC中,向量AB=a AC=b AP的中点,BQ的中点R,CR的中点P试用向量ab表示AP 如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥AB,AP=BC=4,∠ABC=30°,D、E分别是BC、AP的中点,(1)求三棱锥P-ABC的体积;(2)若异面直线AB与ED所成角的大小为θ,求tanθ的值. 在三棱锥P-ABC中,三角形PAC和三角形PBC都是边长为根号2的等边三角形AB=2,OD分别是AB,PB的中点,求证平面PAB垂直平面ABC还有求三棱锥A-PBC的体积 如图,在三棱锥P-ABC中AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC,求证PC⊥AB求二面角B-AP-C的大小 如图,在三棱锥p-ABC中,AC=BC=2,∠ACB=90º,AP=Bp=AB,pc⊥AC.求pc⊥AB,二面角B一AP一C的正弦值 在三棱锥P-ABC中,PA=PB=PC,BC=2a,AC=a,AB=根号3a,点P到平面ABC的距离为3/2a,求证:平面PBC⊥平面ABC 高一立体几何(三棱锥)三棱锥P-ABC中,PA=a,AB=AC=2a,∠PaB=∠PAC=∠BAC=60°,求三棱锥P-ABC的体积. 在三棱锥P-ABC中,PA、PB、PC两两成60°角,PA=a,PB=b,PC=c,求三棱锥P-ABC的体积. 在三棱锥P-ABC中,PA,PB,PC两两成60°角,PA=a,PB=b,PC=c,则三棱锥P-ABC的体积等于 在△ABC中,边AC=1,AB=2,角A=2/3π,过A作AP⊥BC于P,且向量AP=a向量AB+b向量AC,则ab= 如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A,B为直角顶点的等腰直角三角形,PB⊥BC,AB=1,E是PC的中点.(1)求证:PA⊥平面ABC(2)若PB上一点F满足PC⊥平面AEF,求三棱锥P-AEF与三棱锥P-ABC的体积之比 在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.求二面角B-AP-C的大小. 如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC 求二面角B-AP-C的正切值