设函数f(X)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:25:06
设函数f(X)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,o
设函数f(X)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,o
设函数f(X)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,o
证:
(1)
令m=1,n=0,由f(m+n)=f(m)f(n)得
f(1)=f(1+0)=f(1)f(0)
f(1)[f(0)-1]=0
1>0 0
(2)
令m=x,n=-x (x<0)
则-x>0
f(x-x)=f(0)=f(x)f(-x)=1
f(x)=1/f(-x)
又-x>0时,0
f(x)>1
即x<0时,f(x)>1
证明:
(1)
令m=1,n=0,由f(m+n)=f(m)f(n)得
f(1)=f(1+0)=f(1)f(0)
f(1)[f(0)-1]=0
因为1>0 所以0
(2)
令m=x,n=-x (x<0)
则-x>0
f(x-x...
全部展开
证明:
(1)
令m=1,n=0,由f(m+n)=f(m)f(n)得
f(1)=f(1+0)=f(1)f(0)
f(1)[f(0)-1]=0
因为1>0 所以0
(2)
令m=x,n=-x (x<0)
则-x>0
f(x-x)=f(0)=f(x)f(-x)=1
f(x)=1/f(-x)
又-x>0时,0
f(x)>1
即x<0时,f(x)>1
收起
x>0时,0
=> x>0时,f(x)单调递减。
f(0) = f(0)*f(0) => f(0) = 0 或 f(0)=1
当f(0) = 0 , m>0 时,f(m+0) = f(m)*f(0) = 0 与题意矛盾
f(0) =...
全部展开
x>0时,0
=> x>0时,f(x)单调递减。
f(0) = f(0)*f(0) => f(0) = 0 或 f(0)=1
当f(0) = 0 , m>0 时,f(m+0) = f(m)*f(0) = 0 与题意矛盾
f(0) = 1
当m>0:
f(0) = f(m)*f(-m) = 1 => f(-m) = 1/f(m) => 当x<0时,f(x)单调递减。
所以x<0时,f(x)>f(0)=1
f(x)>1
收起
(1)
令m=1,n=0,由f(m+n)=f(m)f(n)得
f(1)=f(1+0)=f(1)f(0)
f(1)[f(0)-1]=0
1>0 0
(2
令m=x,n=-x (x<0)
则-x>0
f(x-x)=f(0)=f(x)f(-x)=1
f(x)=1/f(-x)
又-x>0时,0
f(x)>1
所以x<0时,f(x)>1