证明极限存在X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)利用单调数列收敛准则证明,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:35:13
证明极限存在X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)利用单调数列收敛准则证明,
证明极限存在X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)
利用单调数列收敛准则证明,
证明极限存在X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)利用单调数列收敛准则证明,
首先,Xn+1=1/2(Xn+a/Xn)>=1/2*2√a=√a则无论X1>0的值如何(所以可假定X1>√a),Xn(n=2,3...)的值都大于或等于√a
如果X1=√a可以确定,Xn为常数列,其极限存在,且为√a.
如果X1不等于√a则Xn也不等于√a,且Xn>√a
故Xn+1-Xn=1/2(Xn+a/Xn)-Xn=1/2(a/Xn-Xn)
证明数列X1=2,Xn+1=0.5(Xn+1/Xn)的极限存在
设x1>0,xn+1=3(1+xn)/1+xn,(n=1,2,.)证明极限存在
证明n趋向无穷,极限存在,X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0),x1会不会小于根号a
设x1>-6,xn+1=√xn+6,证明{xn}极限存在
设x1>-6,xn+1=√xn+6,证明{xn}极限存在
证明极限存在X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)利用单调数列收敛准则证明,
x1等于跟2 xn+1=根号2+xn 证明极限xnn趋近于无穷存在并求出极限
已知0<X1<3,Xn=根号下Xn-1(3-Xn-1)证明{Xn}极限存在,并求极限
设X1>0,Xn+1=3+4/Xn,(x=1,2···),证明X趋向无穷时Xn存在,并求此极限
高数题,X1=1,Xn+1=1+1/Xn,证明Xn的极限存在,并求该极限
用单调有界数列收敛准则证明数列极限存在.(1)X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0) (2)X1=√2,Xn+1用单调有界数列收敛准则证明数列极限存在.(1)X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)(2)X1=√2,Xn+1=√(2Xn)(n=1,2..
设X1=1,Xn+1=3(Xn+1)(Xn+3)(n=1,2……),证明Xn的极限存在,并求极限值
高数证明数列极限存在问题X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会 但是途中画圈的证明部分我不是很懂
设x1=1,xn=根号(2xn-1),证明当x趋于无穷时,xn极限存在,并求其极限.
数列极限问题试用夹逼定理证明:①Xn+1=√6+Xn,X1≥-6;②Xn+1=2+3/Xn,X1>0;PS:是证明,需要夹逼定理证明的过程;谢谢!是X(n+1) 证明数列Xn的极限存在.并求此极限.顺便说下其实我的意思已经很明显
设数列{xn}满足xn+1=xn/2+1/xn,X0>0,n=0,1,2,3,...证明数列{xn}极限存在并求出其极限
高数-利用极限存在准则证明数列x1=2,x(n+1)=(xn+1/xn)/2的极限存在
数列{Xn}中,x1=a>0,xn+1=1/2(xn+a/xn).若次数列的极限存在,且大于0,求这个极限.