若Sn=n乘(n+2),怎么才能证明1/S1+2/S2+3/S3+…+1/Sn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:16:28
若Sn=n乘(n+2),怎么才能证明1/S1+2/S2+3/S3+…+1/Sn
若Sn=n乘(n+2),怎么才能证明1/S1+2/S2+3/S3+…+1/Sn
若Sn=n乘(n+2),怎么才能证明1/S1+2/S2+3/S3+…+1/Sn
1/Sn=1/[n(n+2)]=[1/n-1/(n+2)]/2
1/S1+1/S2+…+1/Sn
=[(1-1/3)+(1/2-1/4)+(1/3-1/5)+...+1/(n-1)-1/(n+1)+1/n-1/(n+2)]/2
=[1+1/2-1/(n+1)-1/(n+2)]/2
=3/4-[1/(n+1)+1/(n+2)]/2
所以1/S1+1/S2+…+1/Sn
Sn=n(n+2)
1/Sn=1/[n(n+2)]=(1/2)[1/n-1/(n+2)]
1/S1+1/S2+...Sn=(1/2)[1-1/3+1/2-1/4+1/3-1/5+…+1/(n-1)-1/(n+1)+1/n-1/(n+2)]=(1/2)[1+1/2-1/(n+1)-1/(n+2)]=3/4-(2n+3)/[2(n+1)*(n+2)]
很明显是小于3/4的
Sn=n*(n+2) ,则1/Sn=1/2[1/n-1/(n+2)]
所以 1/S1+2/S2+3/S3+…+1/Sn
=1/2[1/1-1/3+1/2-1/4+1/3-1/5...+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/n-1/(n+2)]
化简得3/4-1/2[1/(n+1)+1/(n+2)]<3/4
若Sn=n乘(n+2),怎么才能证明1/S1+2/S2+3/S3+…+1/Sn
Sn=4n+n(n-1)/2乘6=3n^2+n 怎么化简来的?
数列1/n^2的前n项和Sn,n>1,怎么证明Sn
Sn=1^2+2^2+.n^2=[n(n+1)(2n+1)]/6怎么证明啊?
由正整数组成的等比数列证明Sn乘S(n+2)小于S(n+1)^2
设数列an的前n项和为Sn 已知a1=1 na的第n+1次=(n+2)Sn(n属于N正) 证明数列Sn/n是等比数列并求Sn 若数列...设数列an的前n项和为Sn 已知a1=1 na的第n+1次=(n+2)Sn(n属于N正) 证明数列Sn/n是等比数列并求Sn 若
a1=1,n,an,Sn成等差数列,证明{Sn+n+2}是等比数列
证明数列是等比数列数列前n项和为Sn,a1=1,a(n+1)=(n+2)Sn/n,求证Sn/n是等比数列,
设数列{an}的前n项和为Sn,若a1=1,a(n+1)=(n+2/n)Sn(n属于正整数),证明:数列{Sn/n}是等比数列
数列与不等式结合证明题.Cn=[(n+4)(n+5)]/[(n+1)(n+2)].Sn为数列{Cn}的前n项和,证明Sn
急由正整数组成的等比数列证明Sn乘S(n+2)小于S(n+1)^2是正整数组成的等比数列证明Sn乘S(n+2)小于(S(n+1))^2
an是等差数列,求lim (Sn+Sn+1)/(Sn+Sn-1)lim (Sn+Sn+1)/(Sn+Sn-1)=[n(n+1)/2+(n+1)(n+2)/2]/[n(n+1)/2+n(n-1)/2]=(2n²+4n+2)/2n²=1+2/n+1/n²我就想知道第一步怎么来的
Sn=n^2 证明1/S1+1/S2+.
利用等差数列求和公式Sn=n(a1+an)/2证明Sn=na1+n(n-1)/2*d
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
用数学归纳法证明:Sn=n^2+n
数列an ,a1=1,前n项和为Sn ,正整数n对应的n an Sn 成等差数列.1.证明{Sn+n+2}成等比数列,2.求{n+2/n(n+1)(1+an)}前n项和
已知:Sn=1+1/2+1/3+……+1/n,用数学归纳法证明:Sn^2>1+n/2(n>=2,n∈N+)