b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式⑵证明:对于一切正整数n,2an≤bn+1+1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:30:51
b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式⑵证明:对于一切正整数n,2an≤bn+1+1
b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式
⑵证明:对于一切正整数n,2an≤bn+1+1
b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式⑵证明:对于一切正整数n,2an≤bn+1+1
an=nba(n-1)/(a(n-1)+n-1)
an.a(n-1) +(n-1)an = nba(n-1)
1+(n-1)[ 1/a(n-1)] = nb (1/an)
(n-1)( 1/a(n-1) +[1/(1-b)]/(n-1)) = nb( 1/an + [1/(1-b)]/n )
( 1/an + [1/(1-b)]/n ) /( 1/a(n-1) +[1/(1-b)]/(n-1)) = (1/b) (n-1)/n
( 1/an + [1/(1-b)]/n )/(1/a1- 1/(1-b)) = (1/b) 1/n
( 1/an + [1/(1-b)]/n ) = (1-2b)/[b^2(1-b)] (1/n)
1/an = (1/n) [1/(1-b)] [ (1-2b)/b^2 - 1]
an = n(1-b)/ [ (1-2b)/b^2 - 1]
= n(1-b) b^2/ (1-2b-b^2)
设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式.
设b>0,数列an满足a1=b,an=nban-1/an-1+n-1(n≥2)求数列an通向公式
b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式⑵证明:对于一切正整数n,2an≤bn+1+1
设b>0,数列an满足a1=b,an=(nban-1)/(an-1 +2n -2)(n≥2).⑴求数列{an}的通项公式
设b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式 ⑵证明:对于一切正整设b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式 ⑵证明:对于一切正整数n
设b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式 ⑵证明:对于一切正整设b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式 ⑵证明:对于一切正整数n
设数列{an}满足:a1+a2/2+a3/3+a4/4……+an/n=An+B,其中A、B为常数.数列{an}是否为等差数列?
已知数列{an}满足a1=b,an=nban-1/an-1+n-1(n大于等于2),求数列an的通项公式
数列[An]满足An+1-An+3=0,且A1=-5.求An.
设b>0,数列{An}满足A1=b,An=nbA(n-1)/A(n-1)+2n-2(n>=2).(1)求数列{An}的通项公式;(2)证明:对于一切正整数n,An
已知数列{an}满足a1=a,a2=b,a(n+1)=a(n+2)+an,求a2012
数列an满足a1=0,An+1=an+2n求a2009
数列an满足,a1=8且8an+1an-16an+1+2an+5=0
已知数列an满足a1=1,1/an+1=根号1/an^2+2,an>0,求an
数列an满足an+1=根号(an^2+1)+an,a1=a>0,求an通项公式
数列{an}满足:a1=1,an>0,an+1^2-an^2=1,那么an
已知数列{an}满足a1=1,an+1 -an+2an+1•an=0求通项
数列{an}满足:a1=1,an>0,an+1^2-an^2=1,那么an