已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:31:00
已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.
已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.
已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.
S3+S6=2S9 S3+q^3S3+S3=2(1+q^3+q^6)S3
2+q^3=2+2q^3+2q^6 2q^6=-q^3 q^3=-1/2
a2(1+q^3)=1/2a2 2a8=2a2*q^6=1/2a2 a2+a5=2a8 即得证
等比数列求和公式:Sn=a1*(1-q^n)/(1-q)
因为S3,S9,S6成等差数列,
所以由S3+S6=2*S9代入求和公式并略去a1/(1-q)
得1-q^3+1-q^6=2(1-q^9)
即q^3+q^6=2q^9
两边同乘以a1再除以q^2
a1*q+a1*q^4=a1*q^7
利用等比数列通项公式即
a2+a5=2*a8
即证明
已知{an}的前n项和为Sn,且an+Sn=4求证:数列{an}是等比数列
已知Sn是数列{an}的前n项和,Sn=p^n,判断{an}是否为等比数列
已知数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=[(n+2)/n]Sn,证明:(1)数列{Sn/n}是等比数列;(2)S(n+1)=4Sn
已知{an}为等比数列,Sn是它前n项和,求an ,Sn比较笼统的一道题
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
已知等比数列{an}的前n项和是2,紧接着后面的2n项和是12.再接着后面的3n项的和是S,求S的值数列{an}的前n项和Sn与第n项an间满足2lg (Sn - an +1)/2=lgSn+lg(1-an),求an和Sn
已知Sn是数列前n项和,sn=pn 判断an是否为等比数列
已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列
一道高一等比数列证明的数学题已知{an}的前n项和为Sn,且an+Sn=4.求证{an}是等比数列
数列{an}的前n项和记为Sn,已知a1=(n+2/n)Sn(n=1,2,3……),证明数列{Sn/n}是等比数列以及S(n+1)=4a
已知数列an的前n项和Sn=4-4*2的-n次方,求证an是等比数列
已知数列{an}的前n项和Sn=5^n+t,则{an}为等比数列的充要条件是
已知数列an的前n项和Sn=p*2^n+2,an是等比数列的充要条件
设无穷等比数列an的前n项和为sn,所有项的和为s,且满足s=an+sn,则an的公比是?
已知an是公比为q的等比数列,Sn是其前n项的和,求limSn/S(n+1)
等比数列的前n项和已知an是由正数组成的等比数列,Sn是其前n项和,则Sn,Sn+1,Sn+2能成等比数列吗?若不能成等比数列,比较S^2(n+1)与SnSn+2的大小.
设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列
已知数列{an}的前n项和为sn,若sn=3an+2n(1)求证:数列{an-2}是等比数列