解伯努利方程dy/dx-y=xy5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:42:12

解伯努利方程dy/dx-y=xy5
解伯努利方程dy/dx-y=xy5

解伯努利方程dy/dx-y=xy5
{{y[x] -> -(((-1)^(1/4) Sqrt[2] E^
x)/(-E^(4 x) + 4 E^(4 x) x - 4 C[1])^(1/4))},{y[x] -> ((-1)^(
1/4) Sqrt[2] E^x)/(-E^(4 x) + 4 E^(4 x) x - 4 C[1])^(
1/4)},{y[
x] -> -(((-1)^(3/4) Sqrt[2] E^
x)/(-E^(4 x) + 4 E^(4 x) x - 4 C[1])^(1/4))},{y[x] -> ((-1)^(
3/4) Sqrt[2] E^x)/(-E^(4 x) + 4 E^(4 x) x - 4 C[1])^(1/4)}}
Mathematica解得,有点乱,因为太难写了

http://mathworld.wolfram.com/BernoulliDifferentialEquation.html