初中和圆有关的定理与公式所有的,只要是能够解题的都行

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:00:47

初中和圆有关的定理与公式所有的,只要是能够解题的都行
初中和圆有关的定理与公式
所有的,只要是能够解题的都行

初中和圆有关的定理与公式所有的,只要是能够解题的都行
〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点称为圆心,定长称为半径.轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆.集合说:到定点的距离等于定长的点的集合叫做圆.〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧.大于半圆的弧称为优弧,小于半圆的弧称为劣弧.连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径.圆心角和圆周角:顶点在圆心上的角叫做圆心角.顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形.圆锥侧面展开图是一个扇形.这个扇形的半径成为圆锥的母线.〖圆和圆的相关量字母表示方法〗 圆—⊙ 半径—r 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.两圆圆心之间的距离叫做圆心距.两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.【圆的平面几何性质和定理】 〖有关圆的基本性质与定理〗 圆的确定:不在同一直线上的三个点确定一个圆.圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆也是中心对称图形,其对称中心是圆心.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.〖有关圆周角和圆心角的性质和定理〗 在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等.一条弧所对的圆周角等于它所对的圆心角的一半.直径所对的圆周角是直角.90度的圆周角所对的弦是直径.〖有关外接圆和内切圆的性质和定理〗 一个三角形有唯一确定的外接圆和内切圆.外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等.〖有关切线的性质和定理〗 圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线.切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线.(2)经过切点垂直于切线的直线必经过圆心.(3)圆的切线垂直于经过切点的半径.切线的长定理:从圆外一点到圆的两条切线的长相等.〖有关圆的计算公式〗 1.圆的周长C=2πr=πd 2.圆的面积S=πr 3.扇形弧长l=nπr/180 4.扇形面积S=nπr/360=rl/2 5.圆锥侧面积S=πrl 【圆的解析几何性质和定理】 〖圆的解析几何方程〗 圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2.圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0.和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2.圆的离心率e=0,在圆上任意一点的曲率半径都是r.〖圆与直线的位置关系判断〗 平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交.如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切.如果b^2-4ac

垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 圆的两条平行弦所夹的弧相等。 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等 同一条弧所对的圆周角等于它所对的圆心的角的一...

全部展开

垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 圆的两条平行弦所夹的弧相等。 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等 同一条弧所对的圆周角等于它所对的圆心的角的一半 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。 弦切角等于所夹弧所对的圆周角 推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 切线的性质与判定定理 (1)判定定理:过半径外端且垂直于半径的直线是切线 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN⊥OA且MN过半径OA外端 ∴MN是⊙O的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点 推论2:过切点垂直于切线的直线必过圆心 以上三个定理及推论也称二推一定理: 即:过圆心 过切点 垂直切线中知道其中两个条件推出最后一个条件 切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 圆内相交弦定理及其推论: (1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等 即:在⊙O中,∵弦AB、CD相交于点P ∴PA·PB=PC·PA (2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。 3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 (4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 圆公共弦定理:连心线垂直平分公共弦

收起