证明(sin2A+sin^2A)/(2cos2A+2sin^2A+cosA )=tanA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:25:15

证明(sin2A+sin^2A)/(2cos2A+2sin^2A+cosA )=tanA
证明(sin2A+sin^2A)/(2cos2A+2sin^2A+cosA )=tanA

证明(sin2A+sin^2A)/(2cos2A+2sin^2A+cosA )=tanA
(2cos2A+2sin^2A+cosA )*tanA
=2(cosAcosA-sinAsinA+sinAsinA)*tanA+cosA*tanA
=2sinAcosA+sinA
=sin2A+sinA
原式不相等