已知 如图bd ce是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB,试说明AG与AF的关系,说明理由
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:35:28
已知 如图bd ce是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB,试说明AG与AF的关系,说明理由
已知 如图bd ce是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB,试说明AG与AF的关系,说明理由
已知 如图bd ce是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB,试说明AG与AF的关系,说明理由
AG=AF,根据题意,bd ce是△ABC的高,所以角ABD=角ACG.又因为BF=AC,CG=AB,所以三角形ABD全等于三角形ACG,所以AG=AF.
解 AG,AF的关系是 AG=AF,AG⊥AF.
∵BD、CE分别是△ABC的边AC,AB上的高.
∴∠ADB=∠AEC=90°
∴∠ABD=90°-∠BAD,∠ACG=90°-∠DAB,
∴∠ABD=∠ACG
在△ABF和△GCA中 BF=AC∠ABD=∠ACG
AB=CG
∴△ABF≌△GCA(SAS)
∴AG=AF
...
全部展开
解 AG,AF的关系是 AG=AF,AG⊥AF.
∵BD、CE分别是△ABC的边AC,AB上的高.
∴∠ADB=∠AEC=90°
∴∠ABD=90°-∠BAD,∠ACG=90°-∠DAB,
∴∠ABD=∠ACG
在△ABF和△GCA中 BF=AC∠ABD=∠ACG
AB=CG
∴△ABF≌△GCA(SAS)
∴AG=AF
∠G=∠BAF
又∠G+∠GAE=90度.
∴∠BAF+∠GAE=90度.
∴∠GAF=90°
∴AG⊥AF.
收起
AG=AF,AG⊥AF.
∵BD、CE分别是△ABC的边AC,AB上的高.
∴∠ADB=∠AEC=90°
∴∠ABD=90°-∠BAD,∠ACG=90°-∠DAB,
∴∠ABD=∠ACG
在△ABF和△GCA中 BF=AC∠ABD=∠ACG
AB=CG
.
∴△ABF≌△GCA(SAS)
∴AG=AF
全部展开
AG=AF,AG⊥AF.
∵BD、CE分别是△ABC的边AC,AB上的高.
∴∠ADB=∠AEC=90°
∴∠ABD=90°-∠BAD,∠ACG=90°-∠DAB,
∴∠ABD=∠ACG
在△ABF和△GCA中 BF=AC∠ABD=∠ACG
AB=CG
.
∴△ABF≌△GCA(SAS)
∴AG=AF
∠G=∠BAF
又∠G+∠GAE=90度.
∴∠BAF+∠GAE=90度.
∴∠GAF=90°
∴AG⊥AF.
收起