利用不等式求最值:求a/(b+c)+4b/(a+c)+5c/(a+b)的最小值,abc均大于0求a/(b+c)+4b/(a+c)+5c/(a+b)的最小值.abc均大于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:28:13
利用不等式求最值:求a/(b+c)+4b/(a+c)+5c/(a+b)的最小值,abc均大于0求a/(b+c)+4b/(a+c)+5c/(a+b)的最小值.abc均大于0
利用不等式求最值:求a/(b+c)+4b/(a+c)+5c/(a+b)的最小值,abc均大于0
求a/(b+c)+4b/(a+c)+5c/(a+b)的最小值.abc均大于0
利用不等式求最值:求a/(b+c)+4b/(a+c)+5c/(a+b)的最小值,abc均大于0求a/(b+c)+4b/(a+c)+5c/(a+b)的最小值.abc均大于0
a/(b+c)+4b/(a+c)+5c/(a+b)
=a/(b+c)+1+4b/(a+c)+4+5c/(a+b)+5-10
=(a+b+c)/(b+c)+4(a+b+c)/(a+c)+5(a+b+c)/(a+b)-10
=(a+b+c)(1/(b+c)+4/(a+c)+5/(a+b))-10
=1/2*(b+c+a+c+a+b)(1/(b+c)+4/(a+c)+5/(a+b))-10
利用柯西不等式(或者自己证明(x+y+z)(1/x+4/y+5/z)>(1+2+sqrt(5))^2,展开即可)有上式>=1/2*(1+2+sqrt(5))^2-10=3sqrt(5)-3
当且仅当a/(sqrt(5)/10-1/4)=b/(sqrt(5)/10+1/4)=c/(3/4-sqrt(5)/10)
故最小值为3sqrt(5)-3
sqrt(5)表示5开根号
解:设x=b+c,y=a+c,z=a+b,则
(x+y+z)/2=a+b+c
a=(x+y+z)/2-x,b=(x+y+z)/2-y,c=(x+y+z)/2-z
原式=[(x+y+z)/2-x]/x+4[(x+y+z)/2-y]/y+5[(x+y+z)/2-z]/z
=[(x+y+z)/2](1/x+4/y+5/z)-10
=[(x+y+z)(1/x+4/y...
全部展开
解:设x=b+c,y=a+c,z=a+b,则
(x+y+z)/2=a+b+c
a=(x+y+z)/2-x,b=(x+y+z)/2-y,c=(x+y+z)/2-z
原式=[(x+y+z)/2-x]/x+4[(x+y+z)/2-y]/y+5[(x+y+z)/2-z]/z
=[(x+y+z)/2](1/x+4/y+5/z)-10
=[(x+y+z)(1/x+4/y+5/z)-20]/2
根据柯西不等式,得
(x+y+z)(1/x+4/y+5/z)≥[(√x)(√1/√x)+(√y)(√4/√y)+(√z)(√5/√z)]²
=(1+2+√5)²=14+6√5
当且仅当(√x)/(√1/√x)=(√y)/(√4/√y)=(√z)/(√5/√z)时,取等
此时x=y /2=z /√5
因为原式=[(x+y+z)(1/x+4/y+5/z)-20]/2≥(14+6√5-20)/2=3(√5-1)
所以原式的最小值为3(√5-1)
收起