如图所示,在△ABC中,AD是△ABC的角平分线,完成下列问题.1.过D点画△ABD和△ACD的高(已给出),并比较这两条高的数量关系.2.若AB=2AC,则△ABD与△ACD的面积有什么关系?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:25:57
如图所示,在△ABC中,AD是△ABC的角平分线,完成下列问题.1.过D点画△ABD和△ACD的高(已给出),并比较这两条高的数量关系.2.若AB=2AC,则△ABD与△ACD的面积有什么关系?
如图所示,在△ABC中,AD是△ABC的角平分线,完成下列问题.
1.过D点画△ABD和△ACD的高(已给出),并比较这两条高的数量关系.
2.若AB=2AC,则△ABD与△ACD的面积有什么关系?
如图所示,在△ABC中,AD是△ABC的角平分线,完成下列问题.1.过D点画△ABD和△ACD的高(已给出),并比较这两条高的数量关系.2.若AB=2AC,则△ABD与△ACD的面积有什么关系?
1.相等 设两点分别为E F
∵AD为角平分线
∴∠BAD=∠DAC
∵DE⊥AB DF⊥AC
∴∠AED=∠AFD=90°
∵AD=AD
∴△AED≌△AFD
∴DE=DF
2.S△ABD=1/2DE*AB
S△ADC=1/2DF*AC
∵DF=DE AB=2AC
∴S△ABD=2S△ADC
1.△ABD的高为DE,△ACD的高为DF,AD是△ABC的角平分线,角BAD=角CAD,角DEA=角DFA=90度,AD=DA,所以两个直角三角形为全等三角形,两条高就相等
2.三角形的面积公式为:底X高/2
S△ABD=AB*DE/2,S△ACD=AC*DF/2
在第一问中已经得出两条高相等,而AB=2AC,所以S△ABD=2S△ACD...
全部展开
1.△ABD的高为DE,△ACD的高为DF,AD是△ABC的角平分线,角BAD=角CAD,角DEA=角DFA=90度,AD=DA,所以两个直角三角形为全等三角形,两条高就相等
2.三角形的面积公式为:底X高/2
S△ABD=AB*DE/2,S△ACD=AC*DF/2
在第一问中已经得出两条高相等,而AB=2AC,所以S△ABD=2S△ACD
收起
1.相等。因为角平分线上的点到角两边的距离相等。
2.△ABD是△ACD的面积的2倍,因为两三角形的高相等,三角形的面积等于底边乘以高的一半。