如图所示,在△ABC中,AD是BC边上的高,BE是AC边上的高AD﹑BE相交于F,连接CF且AC=BF,求证∠ABC+∠FCB=90

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:01:25

如图所示,在△ABC中,AD是BC边上的高,BE是AC边上的高AD﹑BE相交于F,连接CF且AC=BF,求证∠ABC+∠FCB=90
如图所示,在△ABC中,AD是BC边上的高,BE是AC边上的高AD﹑BE相交于F,连接CF且AC=BF,求证∠ABC+∠FCB=90

如图所示,在△ABC中,AD是BC边上的高,BE是AC边上的高AD﹑BE相交于F,连接CF且AC=BF,求证∠ABC+∠FCB=90
方法一:
已知:ΔABC中,AD、BE是两条高,AD、BE交于点连接CO并延长交AB于点F
求证:CF⊥AB
证明:
连接DE
∵∠ADB=∠AEB=90度
∴A、B、D、E四点共圆
∴∠ADE=∠ABE
∵∠EAO=∠DAC ∠AEO=∠ADC
∴ΔAEO∽ΔADC
∴AE/AO=AD/AC
∴ΔEAD∽ΔOAC
∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度
∴∠ACF+∠BAC=90度
∴CF⊥AB
∴∠ABC+∠FCD=90
三角形三条高交于一点.
方法二:
在ΔABC中,AD、BE是两条高,AD、BE交于点连接CO并延长交AB于点F 那么CF⊥AB
证明:连接DE ∵∠ADB=∠AEB=90度
∴A、B、D、E四点共圆
∴∠ADE=∠ABE
∵∠EAO=∠DAC ∠AEO=∠ADC
∴ΔAEO∽ΔADC
∴AE/AO=AD/AC
∴ΔEAD∽ΔOAC
∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度
∴∠ACF+∠BAC=90度
∴CF⊥AB
∴∠ABC+∠FCD=90

好难!