设F(x)=g(x)f(x),f(X)在X=a处连续但是不可导,g(X)导数存在,则g(a)=0是F(X)在X=a处可导的( )条件.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:48:39

设F(x)=g(x)f(x),f(X)在X=a处连续但是不可导,g(X)导数存在,则g(a)=0是F(X)在X=a处可导的( )条件.
设F(x)=g(x)f(x),f(X)在X=a处连续但是不可导,g(X)导数存在,则g(a)=0是F(X)在X=a处可导的( )条件.

设F(x)=g(x)f(x),f(X)在X=a处连续但是不可导,g(X)导数存在,则g(a)=0是F(X)在X=a处可导的( )条件.
1、设g(a)=0,
lim[x→a] [F(x)-F(a)]/(x-a)
=lim[x→a] [f(x)g(x)-f(a)g(a)]/(x-a)
=lim[x→a] f(x)g(x)/(x-a)
=lim[x→a]f(x)*lim[x→a] g(x)/(x-a)
=f(a)lim[x→a] [g(x)-g(a)]/(x-a)
=f(a)g'(a)
因此f(x)g(x)在x=a可导
2、设f(x)g(x)在x=a可导
则:lim[x→a] [f(x)g(x)-f(a)g(a)]/(x-a)存在
lim[x→a] [f(x)g(x)-f(a)g(a)]/(x-a)
=lim[x→a] [f(x)g(x)-f(x)g(a)+f(x)g(a)-f(a)g(a)]/(x-a)
=lim[x→a] f(x)[g(x)-g(a)]/(x-a)+lim[x→a] g(a)[f(x)-f(a)]/(x-a)
=f(a)g'(a)+g(a)lim[x→a] [f(x)-f(a)]/(x-a)
由于整个式子极限存在,其中lim[x→a] [f(x)-f(a)]/(x-a)不存在,因此只有g(a)=0时上式极限才存在.
因此g(a)=0
本题结论是充分必要条件.
希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮.

设f(x)定义域在R上的一个函数,判断F(x)=f(x)+f(-x)和G(x)=f(x)-f(-x)的奇偶性 设f(x),g(x),h(x)属于F[x].证明[f(x),(g(x),h(x))]=([f(x),(g(x)],[f(x),h(x)])第四题 设f(x)=x^2 ,g(x)=2^x 则f[g(x)]= g[f(x)]=f[g(x)]= g[f(x)]= 设f(x) g(x)在i 上可导证在f(x)的任意两个零点必有方程f'(x)+g'(x)f(x)=0的实根 设f(x)=x^2,g(x)=2^x 求f(g(x)) 和g(f(x)) 设f(x)=1(|x|1);g(X)=e^x,求f[g(x)]和g[f(x)]. 设f(x)=x^2,g(x)-2^x,求g(f(x) 设f(x),g(x)均可导,证明在f(x)的任意两个零点之间,必有f'(x)+g'(x)f(x)=0的实根 已知f(x)=x^2+c,且f(f(x))=f(x+1),设g(x)=f(f(x)),求g(x)的解析表达式 设f(x)=(x-a)g(x) 其中g(x)在x=a处连续求f'(a) 设f(x)=o,x0 g(x)=0,x0 求f[f(x)],g[g(x)],f{g(x)],g[f(x)] 设f(x)=1,当lxl1 求f[g(x)]和g[f(x)], 设f(x),g(x)不全为零,证明(f(x),g(x)+f(x))=(g(x),g(x)-f(x)) 高等代数 多项式 设f(x),g(x)为数域f上的不全为零多项式.证明[f(x),g(x)]=[f(x),f(x)+g(x)] 设f(x)=1/1-x,x≠1,求函数g(x)=f[f(f(x))]乘f(1/f(x)) f[f(f(x))]=1/1-f(f(x))=x 这一步看不懂 设函数f(x)、g(x)在R上可导设函数f(x)、g(x)在R上可导,且f'(x)>g'(x),则当ag(x)+f(b) 设函数f(x)和g(x),h(x)=max{f(x),g(X)},u(X)=min{f(X),g(x)}.如何用f(X)、g(x)表示h(x)、u(x)?设函数f(x)和g(x)在相同的区间连续,其中,h(x)=max{f(x),g(X)},u(X)=min{f(X),g(x)}.如何用f(X)、g(x)以及一些运算符 已知f(x)是定义在R上的函数,设g(x)=[f(x)+f(-x)]/2,h(x)=[f(x)-f(-x)]/2,试判断g(x)与h(x)的奇偶性.已知f(x)是定义在R上的函数,设g(x)=[f(x)+f(-x)]/2,h(x)=[f(x)-f(-x)]/2,1.试判断g(x)与h(x)的奇偶性.2试判断g(x),h(x