lg2·lg2+lg2·lg5+lg5是得1吗?怎么得出来的?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:44:08

lg2·lg2+lg2·lg5+lg5是得1吗?怎么得出来的?
lg2·lg2+lg2·lg5+lg5是得1吗?
怎么得出来的?

lg2·lg2+lg2·lg5+lg5是得1吗?怎么得出来的?
原式 = lg2(lg2 + lg5) + lg5
= lg2 * lg10 + lg5
= lg2 + lg5
= lg10
= 1

lg2·lg2+lg2·lg5+lg5
=lg2(lg2+lg5)+lg5
=lg2lg10+lg5
=lg2+lg5
=lg10
=1

是的
lg2·lg2+lg2·lg5+lg5=lg2*(lg2+lg5)+lg5=lg2*1+lg5=lg2+lg5=1

lg2·lg2+lg2·lg5+lg5=lg2·lg2+lg2·(1-lg2)+1-lg2=1