设f(x)=e的x次方除以(1+ax),其中a为正实数(1)当a=3分之4时,求f(x)的极值点.(2)若f(x)为R上的单调函数求a取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:35:57

设f(x)=e的x次方除以(1+ax),其中a为正实数(1)当a=3分之4时,求f(x)的极值点.(2)若f(x)为R上的单调函数求a取值范围.
设f(x)=e的x次方除以(1+ax),其中a为正实数(1)当a=3分之4时,求f(x)的极值点.(2)若f(x)为R上的单调函数求a取值范围.

设f(x)=e的x次方除以(1+ax),其中a为正实数(1)当a=3分之4时,求f(x)的极值点.(2)若f(x)为R上的单调函数求a取值范围.
1)求导,得f'(x)=e^x{1+(4/3)x^2-(8/3)x}/{1+(4/3)x^2}^2
因为求极值点,则x=0.5或1.5
0,解得x=0.5或1.5
所以极值点为x=0.5或1.5
(2)f'(x)=e^x(ax^2-2ax+1)/(1+ax^2)^2
因为是单调函数,所以只要使ax^2-2ax+1恒大于0或是恒小于0
当a=0时,满足条件
当a>0时,最小值4ac-b^2/4a>0,得0当a<0时,最大值4ac-b^2/4a<0,不存在
所以0<=a<1