若sinα/sqr(1+cotα^2)+cosα/sqr(1+tanα^2)=-cos2α 则α是第几象限角?答案是第二象限角 为什么不可以是第四象限角?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:17:27
若sinα/sqr(1+cotα^2)+cosα/sqr(1+tanα^2)=-cos2α 则α是第几象限角?答案是第二象限角 为什么不可以是第四象限角?
若sinα/sqr(1+cotα^2)+cosα/sqr(1+tanα^2)=-cos2α 则α是第几象限角?
答案是第二象限角 为什么不可以是第四象限角?
若sinα/sqr(1+cotα^2)+cosα/sqr(1+tanα^2)=-cos2α 则α是第几象限角?答案是第二象限角 为什么不可以是第四象限角?
sinα/√(1+cot²α)+cosα/√(1+tan²α)
=sinα/√[1+(cos²α/sin²α)] + cosα/√[1+(sin²α/cos²α)]
=sinα/√[(sin²α+cos²α)/sin²α] + cosα/√[(cos²α+sin²α)/cos²α]
=sinα/√(1/sin²α) + cosα/√(1/cos²α)
=sinα·|sinα| + cosα·|cosα|
-cos2α=-(cos²α-sin²α)=sin²α-cos²α
∴sinα·|sinα| + cosα·|cosα| = sin²α-cos²α
∴sinα>0,cosα<0
∴α是第二象限角.
若sinα/sqr(1+cotα^2)+cosα/sqr(1+tanα^2)=-cos2α 则α是第几象限角?答案是第二象限角 为什么不可以是第四象限角?
已知α、β是三角形的内角,且 cosα / sinβ =sqr(2),cotα / tanβ =sqr(3),求α
已知0<α<π/2,0<β<π/2,且sinα/cosβ=sqr(2),tanβ/cotβ=sqr(3),求cosα、cosβ的值?
sinα=sqr(2)sinβ,sqr(3)cosα=sqr(2)cosβ,且α,β均为三角形内角,求sinα,sinβ
化简(sin^4α*cot^2α)-1
若2sinα=1+cosα,则cotα/2=
证明下列恒等式(1)1/tanα+cotα=sinαcosα(2)tanα+cotα-2/tanα+cotα+2
证明(sinα+cosα)^2=1+2sinαcotα
sin(π+α)=1/2,求sin(2π-α)-cot(α-π)cosα
求证(2-cos^2α)(1+2cot^2α)=(2+cot^2α)(2-sin^2)
证明:(1+cot²α)/(1-cot²α)=1/(2sin²α-1) 急用!
化简(cos^2α-sin^2β)/(sin^2α*sin^2β)-cot^2αcot^2β
化简(cosα^2-sinβ^2)/(sinα^2sinβ^2)-cotα^2cotβ^2
cos²α-sin²β/sin²αsin² β=cot² α cot² β -1
证明:sin(-α)sin(丌-α)-tan(-α)cot(α-丌)-2cos^2(-α)+1=sin^2α
sinα/ 1-cosα =cot α/2α为角,怎么来的,sinα / 1-cosα = cot α/2
若(cosα)^2+(cosβ)^2+(cosγ)^2=1(三个角都为锐角) 请证明:cotαcotβ+cotβcotγ+cotγcotα
(cot^2)α((tan^2) α-(sin^2) α) 化简