定积分∫(x^2+a^2) ^ 1/2dx积分上限—a积分下限0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:29:29
定积分∫(x^2+a^2) ^ 1/2dx积分上限—a积分下限0
定积分∫(x^2+a^2) ^ 1/2dx积分上限—a积分下限0
定积分∫(x^2+a^2) ^ 1/2dx积分上限—a积分下限0
∫[0,a]√(x²+a²) dx,令x=a*tany => dx=a*sec²y dy
当x=0,y=0 // 当x=a,y=π/4
原式= ∫[0,π/4]√(a²*tan²y+a²) * a*sec²y dy
= ∫[0,π/4]√[a²(1+tan²y)] * a*sec²y dy
= ∫[0,π/4]a*secy*a*sec²y dy
= a²∫[0,π/4]sec³y dy
= a² * [(1/2)secy*tany + (1/2)ln|secy+tany|] [0,π/4]
= a² * [(1/2)sec(π/4)tan(π/4) + (1/2)ln(sec(π/4)+tan(π/4))] - a² * [(1/2)ln(1)]
= a² * [(1/2)(√2)(1) + (1/2)ln(√2+1)]
= a²/√2 + (a²/2)ln(√2+1)
有关∫sec³x dx的积分:
J = ∫sec³x dx = ∫secx dtanx
= secx*tanx - ∫tanx dsecx
= secx*tanx - ∫tanx*secxtanx dx
= secx*tanx - ∫(sec²x-1)*secx dx
= secx*tanx - J + ∫secx dx
2J = secx*tanx + ∫secx(secx+tanx)/(secx+tanx) dx
J = (1/2)secx*tanx + (1/2)∫(secxtanx+sec²x)/(secx+tanx) dx
J = (1/2)secx*tanx + (1/2)∫d(secx+tanx)/(secx+tanx) dx
J = (1/2)secx*tanx + (1/2)ln|secx+tanx| + C
令x=asint,0≤t≤π/2.则解得t=arcsin(x/a)
∫√(a²-x²)dx
=∫√[a²-a²sint]d(asint)
=a²∫cos²tdt=(a²/2)∫(1+cos2t)dt
=(a²/2)[t+(1/2)sin2t]+C
=(a²/2)[arc...
全部展开
令x=asint,0≤t≤π/2.则解得t=arcsin(x/a)
∫√(a²-x²)dx
=∫√[a²-a²sint]d(asint)
=a²∫cos²tdt=(a²/2)∫(1+cos2t)dt
=(a²/2)[t+(1/2)sin2t]+C
=(a²/2)[arcsin(x/a)+(x/a²)√(a²-x²)]+C
=(a²/2)arcsin(x/a)+(x/2)√(a²-x²)+C(C表示常数)
∫(0,a)√(a²-x²)dx=a²∫(0,π/2)cos²tdt=(a²/2)[t+(sin2t)/2](0,π/2)=πa²/4.
收起
∫√(x^2+a^2)dx
=(a^2)∫√[(x/a)^2+1]d(x/a)
x/a=tanu d(x/a)=dtanu=secu^2du
cosu=√[1/(1+tanu^2)]=a/√(x^2+a^2)
sinu=x/√(a^2+x^2)
=a^2∫secu^3du
=a^2∫secudtanu^2
=a^2secu(tanu)^2-...
全部展开
∫√(x^2+a^2)dx
=(a^2)∫√[(x/a)^2+1]d(x/a)
x/a=tanu d(x/a)=dtanu=secu^2du
cosu=√[1/(1+tanu^2)]=a/√(x^2+a^2)
sinu=x/√(a^2+x^2)
=a^2∫secu^3du
=a^2∫secudtanu^2
=a^2secu(tanu)^2-a^2∫(tanu)^2secudu
=a^2secu(tanu)^2-a^2∫[(secu)^3-secu]du
=a^2secu(tanu)^2-a^2∫(secu)^3+a^2∫secudu
2a^2∫(secu)^3du=a^2secu(tanu)^2+a^2*(1/2)ln|(1+sinu)/(1-sinu)|
a^2∫(secu)^3du=(a^2/2)secu(tanu)^2+(a^2/2)ln|(1+sinu)/cosu|+C
原式=(a^2/2)√[(x/a)^2+1] *(x/a)^2 +(a^2/2)ln| (√(x^2+a^2)+x)/a|+C
收起
可用分部积分法,设原积分值是A,则
A=∫(0到a)√(x^2+a^2)dx //选u=√(x^2+a^2),v=x
=a×√2a-∫(0到a) x^2/√(x^2+a^2)dx //将分子的x^2看作(x^2+a^2)-a^2
=a×√2a-∫(0到a) √(x^2+a^2)dxa×√2a+a^2×∫(0到a) 1/√(x^2+a^2)dx //利用不定积...
全部展开
可用分部积分法,设原积分值是A,则
A=∫(0到a)√(x^2+a^2)dx //选u=√(x^2+a^2),v=x
=a×√2a-∫(0到a) x^2/√(x^2+a^2)dx //将分子的x^2看作(x^2+a^2)-a^2
=a×√2a-∫(0到a) √(x^2+a^2)dxa×√2a+a^2×∫(0到a) 1/√(x^2+a^2)dx //利用不定积分公式,1/√(x^2+a^2)的原函数是ln|x+√(x^2+a^2)|
=a×√2a-A+a^2×ln(1+√2)
得A=√2a^2/2+a^2/2×ln(1+√2),此为原积分值
收起