计算极限lim→0+ [∫(上限x,下限0)ln(t+e^t)dt] / (1-cosx)请给详细步骤!!!!!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:49:37

计算极限lim→0+ [∫(上限x,下限0)ln(t+e^t)dt] / (1-cosx)请给详细步骤!!!!!
计算极限lim→0+ [∫(上限x,下限0)ln(t+e^t)dt] / (1-cosx)
请给详细步骤!!!!!

计算极限lim→0+ [∫(上限x,下限0)ln(t+e^t)dt] / (1-cosx)请给详细步骤!!!!!
1、分母用等价代换:1-cosx~(1/2)x²;
2、然后用罗比达法则,分子分母同时求导;
lim(x→0+) [∫(上限x,下限0)ln(t+e^t)dt] / (1-cosx)
=lim(x→0+) [∫(上限x,下限0)ln(t+e^t)dt] / [(1/2)x²]
=lim(x→0+) [ln(x+e^x)] / x
3、继续求导:
=lim(x→0+) [(1+e^x)/(x+e^x)] /1
=lim(x→0+) [(1+e^x)/(x+e^x)]
4、取极限:
=2

lim(x->0+) ∫(0到x) [ln(t + e^t) dt]/(1 - cosx)
= lim(x->0+) [d/dx ∫(0到x) (ln(t + e^t))]/[d/dx (1 - cosx)]
= lim(x->0+) [ln(x + e^x)]/sinx
= lim(x->0+) [d/dx ln(x + e^x)]/(d/dx sinx)
= l...

全部展开

lim(x->0+) ∫(0到x) [ln(t + e^t) dt]/(1 - cosx)
= lim(x->0+) [d/dx ∫(0到x) (ln(t + e^t))]/[d/dx (1 - cosx)]
= lim(x->0+) [ln(x + e^x)]/sinx
= lim(x->0+) [d/dx ln(x + e^x)]/(d/dx sinx)
= lim(x->0+) [(1 + e^x)/(x + e^x)]/cosx
= lim(x ->0+) (1 + e^x)/[(x + e^x)cosx]
= (1 + 1)/[(0 + 1)(1)]
= (2)/(1)
= 2

收起

计算极限lim→0+ [∫(上限x,下限0)ln(t+e^t)dt] / (1-cosx)请给详细步骤!!!!! 计算lim→0 [∫(上限x^2,下限0)costdt/xsinx 计算极限limx→0∫(上限x,下限x^2)tantdt/1-cosx 求极限 lim(x→0) [1/(tanx)^3]∫arcsintdt (积分上限x^2,积分下限0) 帮忙计算极限 lim(x→∞) ∫(下限0.上限x)(t-sint)dt/e^x^4-1 计算 lim(x→∞)sin^2x/∫(上限x^2,下限0)(t-cost)dt 计算 lim(x→∞)sin^2x/∫(上限x^2,下限0)(t-cost)dt 求极限lim(x趋向0)(∫ln(1+t)dt)/x^4 上限x^2下限0 lim(x→0)∫(上限为x,下限为0)sin(t^2)dt/x^3求极限过程,1/3 求极限lim(∫ln(1+xt))dt/(tanx-sinx)其中积分上限是x,下限是0当x→0时 lim→0[∫(上限x^2,下限0)costdt]/ln(1+x^2) lim→0{1/ln(1+x)[∫(上限x,下限0)cost^2 dt lim→0[∫(上限x^2,下限0)costdt]/ln(1+x^2) 求极限,例题x趋于0 lim∫下限为0上限为x[∫下限为0上限为u^2arctan(1+t)dt]du/x(1-cosx)=2lim x趋于0∫下限为0上限为x[∫下限为0上限u^2 arctan(1+t)dt]du/x^3这个前面那个2是怎么来的!= x趋于0 2lim∫下限0上限 求极限,例题x趋于0 lim∫下限为0上限为x[∫下限为0上限为u^2arctan(1+t)dt]du/x(1-cosx)=2lim x趋于0∫下限为0上限为x[∫下限为0上限u^2 arctan(1+t)dt]du/x^3这个前面那个2是怎么来的!=2lim x趋于0∫下限0上限 lim→0[∫(上限x,下限0)ln(1+sint)dt]/1-cosx lim→0+ [∫(上限x,下限0)ln(t+e^t)dt] / (1-cosx) 计算积分 ∫(上限1,下限0)dx∫(上限1,下限x)siny^2dy