高中数学设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.有[xf′(x)-f(x)]/x²<0恒成立,则不等式x²f(x)>0的解集是x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:13:01
高中数学设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.有[xf′(x)-f(x)]/x²<0恒成立,则不等式x²f(x)>0的解集是x
高中数学设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.
设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.有[xf′(x)-f(x)]/x²<0恒成立,则不等式x²f(x)>0的解集是
x
高中数学设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.有[xf′(x)-f(x)]/x²<0恒成立,则不等式x²f(x)>0的解集是x
x>0时设有F(x)=f(x)/x
那么有F'(x)=[f'(x)x-f(x)]/x^20时有F(x)=f(x)/x是一个减函数.故f(x)=xF(x)也是一个减函数.
所以有x>0时有x^2f(x)>0,即有f(x)>0=f(2),即有0
高中数学设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.有[xf′(x)-f(x)]/x²<0恒成立,则不等式x²f(x)>0的解集是x
高中数学设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时.有[xf′(x)-f(x)]/x²<0恒成立,则不等式x²f(x)>0的解集是x
设函数f(X)=是定义在R上的奇函数,当X后面是>
设f(x)是定义在R上的奇函数,当x
设f(x)是定义在R上的奇函数,当x
设f(X)是定义在R上的奇函数,当x
1.设f(x)是在定义域内R上的奇函数,且X
设f x 是定义在r上的奇函数,fx+2=-fx,当0
设f x 是定义在r上的奇函数,fx+2=fx,当0
设f x 是定义在r上的奇函数,且y=
设f是定义在R上的奇函数,当X
设f(x)是定义在R上的奇函数,在(负无穷,0)上有xf'(x)+f(x)
设f(x)是定义在R上的奇函数,f(x+2)= -f(x),当0
设f(x)是定义在R上的奇函数,f(x+2)=-f(x),当0
高中数学-函数的奇偶性设函数是定义在R上的函数,切对任意x y都有f(x+y)=f(x)+f(y)求证函数是奇函数
设f(x)是定义在R上的函数,证明f(x)等于一个奇函数与偶函数的和
设F(x)是定义在R上的奇函数且单调递减.设F(x)是定义在R上的奇函数且单调递减,若F(2-a)+f(4-a平方)
设f[x] 定义在R上的一个函数,则函数F[X]=f[x]-f[-x]在R上一定是奇函数、偶函数、是奇函数又是偶函数.非奇函数和偶函数