高数题,曲线积分计算I=∫L(x+e^siny)dy-(y-1/2)dx,其中L是第一象限的直线段x+y=1与第二象限的x^2+y^2=1所成的曲线,方向从(1,0)到(0,1)到(-1,0).

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:34:00

高数题,曲线积分计算I=∫L(x+e^siny)dy-(y-1/2)dx,其中L是第一象限的直线段x+y=1与第二象限的x^2+y^2=1所成的曲线,方向从(1,0)到(0,1)到(-1,0).
高数题,曲线积分
计算I=∫L(x+e^siny)dy-(y-1/2)dx,其中L是第一象限的直线段x+y=1与第二象限的x^2+y^2=1所成的曲线,方向从(1,0)到(0,1)到(-1,0).

高数题,曲线积分计算I=∫L(x+e^siny)dy-(y-1/2)dx,其中L是第一象限的直线段x+y=1与第二象限的x^2+y^2=1所成的曲线,方向从(1,0)到(0,1)到(-1,0).
用x轴上的一段直线围成闭路用green公式做.

计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧 高数题,曲线积分计算I=∫L(x+e^siny)dy-(y-1/2)dx,其中L是第一象限的直线段x+y=1与第二象限的x^2+y^2=1所成的曲线,方向从(1,0)到(0,1)到(-1,0). 计算曲线积分I=∫-ydx+xdy其中L是沿曲线y=根号(2x-x^2)从A(2,0)到(0,0) 求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2 计算曲线积分I=∮L(y-e^x)dx+(3x+e^y)dy,其中L是椭圆x^2/a^2+y^/b^2=1的正向 计算曲线积分∫(e^x)(1-2cosy)dx+2(e^x)sinydy,其中L是由点A(派,0)经曲线y=sinx到点O(0,0) 答案是e^派-1 计算曲线积分I=∫L(y^3*e^x-2y)dx+(3y^2*e^x-2)dy,其中曲线L是从原点O(0,0)到点A(2,2)再到B(4,0)的折线 计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2 计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2 计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿曲线y=sinx到点(π,0)的弧段 设平面曲线L为(x-1)^2+y^2=4取逆时针向,计算对坐标的曲线积分I=∫L (ydx-xdy)/(x^2+y^2) 计算曲线积分I=,如图 计算曲线积分I=,如图 曲线积分I=∫(闭区域L)e^x[(1-cosy)dx-(y-siny)dy],L为区域0≤x≤π,0≤y≤sinx的边界,取逆时针方向一道数分题, 计算曲线积分I=[xcos+ycos]ds 其中l为封闭曲线,n为它的外法向量,2S,S为l所围面积求过程,这是格林公式的题 计算积分:(1)I=∫∫(D)ydσ,积分区域D是由曲线y²=x和y=-x+2围成的有界区域.(2)利用极坐标下的二重积分求欧拉积分I=∫e^(-x²)dx,其中是积分上限和积分下限 计算曲线积分I=∫(X^2-y)dx-(x+cos^2y)dy,其中是L在上半圆周y=√((x-x^2)由点(0,0)到(1,0)的一段弧. 曲线积分与曲面积分的问题∫L(e的x次siny-my)dx+(e的x次cosy-m)dy ,其中L为从A(a,0)到O(0,0)的上半圆 x方+y方=ax利用添加辅助线计算答案是1/8 *mπa方赶着回家高数作业今晚一定要写好啊