(2+1)(2^2+1)(2^4+1)(2^8+1)……(2^1024+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:27:48
(2+1)(2^2+1)(2^4+1)(2^8+1)……(2^1024+1)
(2+1)(2^2+1)(2^4+1)(2^8+1)……(2^1024+1)
(2+1)(2^2+1)(2^4+1)(2^8+1)……(2^1024+1)
分子、分母同时乘以(2-1)
答案为(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)……(2^1024+1)/(2-1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)……(2^1024+1)=……=(2^1024+1)(2^1024-1)=2^2048-1
2^2048-1
分子乘一个(2-1)
然后一直用平方差公式就行了
1/2,1/4,
(1-1/2^2)(1-1/3^2)(1-1/4^2).(1-1/2009^2),
(2+1)({2}^{2}+1)({2}^{4}+1)({2}^{8}+1).({2}^{64}+1)+1
巧算((2^1+1)(2^2+1)(2^4+1)(2^8+1)+1)/2^15
计算(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16.计算:(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16.
[(1+2^-(1/32)]*[(1+2^-(1/16)]*[(1+2^-(1/8)]*[(1+2^-(1/4)]*[(1+2^-(1/2)]
(1-1/2^2)*(1-1/3^2)*(1-1/4^2)*.*(1-1/2002^2)*(1-1/2003^2)
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)(1+1/2^16),
1,2,4,4,1,( )
(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)
(2+1)(2-1)(2^2+1)(2^4+1).(2^8+1)化简
(1+2)*(1+2^2)*(1+2^4)*(1+2^8)*(1+2^16)
化简(1+2)(1+2^2)(1+2^4)(1+2^8)(1+2^16)
化简(2+1)(2^2+1)(2^4+1)(2^8+1)…(2^256+1)
(2-1)(2+1)(2^2+1)(2^4)...(2^64+1)+1=?
(2+1)(2^2+1)(2^4+1)(2^8+1)……(2^1024+1)