(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:35:39
(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^1-1)(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)+1
=(2^16-1)(2^16+1)(2^32+1)+1
=(2^32-1)(2^32+1)+1
=2^64-1+1
=2^64
将第一个式子变形为(2的2次方)-1;再依次用平方差公式就可以了。2的64次方
1/2,1/4,
(1-1/2^2)(1-1/3^2)(1-1/4^2).(1-1/2009^2),
(2+1)({2}^{2}+1)({2}^{4}+1)({2}^{8}+1).({2}^{64}+1)+1
巧算((2^1+1)(2^2+1)(2^4+1)(2^8+1)+1)/2^15
计算(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
[(1+2^-(1/32)]*[(1+2^-(1/16)]*[(1+2^-(1/8)]*[(1+2^-(1/4)]*[(1+2^-(1/2)]
(1-1/2^2)*(1-1/3^2)*(1-1/4^2)*.*(1-1/2002^2)*(1-1/2003^2)
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)(1+1/2^16),
1,2,4,4,1,( )
(2^1+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^16
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
计算题:(1+1/2) (1+1/2^2) (1+1/2^4) (1+1/2^8) +1/2^15
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15=?
1、1/2、1/4、1/7
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16.计算:(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16.
求和:sn=1/2^2-1+1/4^2-1+.1/(2n)^2-1
(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)