(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^16
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:29:44
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^16
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^16
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^16
原式=(1-1/2)(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)/(1-1/2)+1/2^16
=2(1-1/2^16)+1/2^16 前面每两项结合为平方差公式
=2-1/2^16
1 2 1 2 () () ()()
1+1/2^2
1 1 1 1 1 1 1 1 1 1 1 -+-2 2
1+2+1+2+1+2+1+2+1+2+1+2+1+2 =( )*( ) =()
(1-1/2^2)(1-1/3^2)(1-1/4^2).(1-1/2009^2),
(1+1/2+1/3+...
计算行列式 2 1 1 1 ,1 2 1 1 ,1 1 2 1,1 1 1 2,
1/2-1/(n+1)
证明 1+1/1+1/1*2+1/1*2*3+.+1/1*2*3*...*n
[(1+2^-(1/32)]*[(1+2^-(1/16)]*[(1+2^-(1/8)]*[(1+2^-(1/4)]*[(1+2^-(1/2)]
(1-1/2^2)*(1-1/3^2)*(1-1/4^2)*.*(1-1/2002^2)*(1-1/2003^2)
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)(1+1/2^16),
1*1/2=?
1+1+2+56
5,2,1,1,
1/2+56/1
1.1/2.
2x-1-1