化简sin^2α+sin^2β-sin^2αsin^2β+cos^2cos^2β

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:18:41

化简sin^2α+sin^2β-sin^2αsin^2β+cos^2cos^2β
化简sin^2α+sin^2β-sin^2αsin^2β+cos^2cos^2β

化简sin^2α+sin^2β-sin^2αsin^2β+cos^2cos^2β
化简sin²α+sin²β-sin²αsin²β+cos²αcos²β
原式=sin²α+sin²β-sin²αsin²β+(1-sin²α)(1-sin²β)
=sin²α+sin²β-sin²αsin²β+(1-sin²α-sin²β+sin²αsin²β)
=1

原式=sin^2α+sin^2β-sin^2αsin^2β+(1-sin²α)(1-sin²β)
=sin^2α+sin^2β-sin^2αsin^2β+1-sin²α-sin²β+sin²αsin²β
=1