99999X22222+33333X3333499999X22222+33333X33334=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 02:57:51

99999X22222+33333X3333499999X22222+33333X33334=?
99999X22222+33333X33334
99999X22222+33333X33334=?

99999X22222+33333X3333499999X22222+33333X33334=?
方法一:99999*22222+33333*33334=99999*22222+3*11111*(33333+1)
=99999*22222+11111*(99999+3)=99999(22222+11111)+33333
=99999*33333+33333
=33333(99999+1)
=3333300000
方法二:99999X22222+33333X33334
=33333X3X22222+33333X33334
=33333X66666+33333X33334
=33333X(66666+33334) (结合律)
=33333X100000
=3333300000

3333300000

99999X22222+33333X33334
=33333X3X22222+33333X33334
=33333X66666+33333X33334
=33333X(66666+33334) (结合律)
=33333X100000
=3333300000

99999*22222+33333*33334=99999*22222+3*11111*(33333+1)
=99999*22222+11111*(99999+3)=99999(22222+11111)+33333
=99999*33333+33333
=33333(99999+1)
=3333300000

99999X22222+33333X33334
=33333x3x22222+33333x33334
=33333x66666+33333x33334
=33333x(66666+33334)
=33333x100000
=3333300000

99999X22222+33333X3333499999X22222+33333X33334=? 4+6+...+20+1-3-5-...-19= 199+299+399+499+599+5= 99999x22222+33333x33334= 591x482+118= 4+6+...+20+1-3-5-...-19= 199+299+399+499+599+5= 99999x22222+33333x3333= 还有一个!591x482+118 求下列算式的答案.是简便计算.204x25 97x24 28x51+47x51+25x51 49x33+35x33-74x33 99.99X22.22+33.33X33.34怎么简算? 99.99X22.22+33.33X33.34怎么简算 99.99x22.22+33.33x33.34简便计算 99.99x22.22+33.33x33.34要过程 99.99X22.22十33.33X33.34用巧算,急 3x0.6=1.8,33x3.6=11.88,333x33.6=111.888,求3.33...3X33...3.6=?其中20个3 3x0.6=1.8,33x3.6=11.88,333x33.6=111.88求3.33...3x33...3.6=?其中3都是20个. 99.99x22.22十33.33x33.34怎么用简便方法 ( Thetotalis%d,h);main()inti,j,k,n;geninterrupt(0x33);for(n=0;n 计算:1/1x3+1/3x5+1/5x7+.+1/31x33+1/33x35, lingo error code 11: 快来回答吧MIN=X31+X32+X33;0.75*X11-X21-X31+0.5*X62=-80;0.8*X12+X21-X22-X32-X62+0.5*X63=-2.5;0.9*X13+X22-X33-X63=5;X11 1x3分之一+3x5+分之一5x7分之一加.31x33分之一+33x35分之一要说明方法 lingo错误提示:too many inequality or equality ralationMinY=2000*Xi1+4800*Xi2+7500*Xi3+87.5(Xi1+Xi2+Xi3);X11+X12+X13=10;X12+X13+X21+X22+X23=23;X13+X22+X23+X31+X32+X33=19;X23+X32+X33+X41+X42+X43=26;X33+X42+X43+X51+X52=20;X43+X52+X61=14;Xi1=X11+X2 X11+X12+X13+X14≤50X21+X22+X23+X24≤60X31+X32+X33≤5030≤X11+X21+X31≤8070≤X12+X22+X32≤14010≤X13+X23+X33≤3010≤X14+X24≤50MAX Z=290X11+320X12+230X13+280X14+310X21+320X22+260X23+300X24+260X31+250X32+220X33求X11,X12,X13,X14,X21,X22,X23,