99.99X22.22+33.33X33.34怎么简算
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:27:07
99.99X22.22+33.33X33.34怎么简算
99.99X22.22+33.33X33.34怎么简算
99.99X22.22+33.33X33.34怎么简算
99.99×22.22+33.33×33.34
=(99.99÷3)×(22.22×3)+33.33×33.34
=33.33×66.66+33.33×33.34
=33.33×(66.66+33.34)
=33.33×100
=3333
用计算器啦,这样就最简单了,又或者去问老师
(100-0.01)*22.22+(33.34-0.01)*33.34
=2222-0.2222+33.34*33.34-0.3334
=3333
99.99X22.22+33.33X33.34怎么简算?
99.99X22.22+33.33X33.34怎么简算
99.99x22.22+33.33x33.34简便计算
99.99x22.22+33.33x33.34要过程
99.99X22.22十33.33X33.34用巧算,急
99.99x22.22十33.33x33.34怎么用简便方法
lingo 出现1017min = 6*x11+2*x12+6*x13+7*x14+4*x21+9*x22+5*x23+3*x24+8*x31+8*x32+x33+5*x34;x11+x12+x13+x14=30;x21+x22+x23+x24=25;x31+x32+x33+x34=21;x11+x21+x31=15;x12+x22+x32=17;x13+x23+x33=22;x14+x24+x34=12;
lingo error code 11: 快来回答吧MIN=X31+X32+X33;0.75*X11-X21-X31+0.5*X62=-80;0.8*X12+X21-X22-X32-X62+0.5*X63=-2.5;0.9*X13+X22-X33-X63=5;X11
X11+X12+X13+X14≤50X21+X22+X23+X24≤60X31+X32+X33≤5030≤X11+X21+X31≤8070≤X12+X22+X32≤14010≤X13+X23+X33≤3010≤X14+X24≤50MAX Z=290X11+320X12+230X13+280X14+310X21+320X22+260X23+300X24+260X31+250X32+220X33求X11,X12,X13,X14,X21,X22,X23,
lingo错误提示:too many inequality or equality ralationMinY=2000*Xi1+4800*Xi2+7500*Xi3+87.5(Xi1+Xi2+Xi3);X11+X12+X13=10;X12+X13+X21+X22+X23=23;X13+X22+X23+X31+X32+X33=19;X23+X32+X33+X41+X42+X43=26;X33+X42+X43+X51+X52=20;X43+X52+X61=14;Xi1=X11+X2
22x22=484 222x22=4884 .总结规律
max=1000*(x11+x12+x13)+700*(x21+x22+x23)+600*(x31+x32+x33);(8*x11+6*x21+5*x31)=2/3(1-0.15)*(8*x12+6*x22+5*x32);(8*x13+6*x23+5*x33)=1/2(1-0.15)*(8*x12+6*x22+5*x32);(8*x11+6*x21+5*x31)=4/3(1-0.10)*(8*x13+6*x23+5*x33);8*x11+6*x21+5*x31
lingo 提示语法错误 Max=12*x31+7*x32+13*x33-0.5*x21-0.5*x22-0.5*x23-x41*x11-x42*x12-x43*x13
请问怎么用范德蒙德行列式解下列行列式 1 1 1 1 x1 x2 x3 y x12 x22 x32 y2 x13 x23 x33 y3
matlab中的sym()函数问题sym('[x11 x12 x13 x14;x21 x22 x23 x24;x31 x32 x33 x34;x41 x42 x43 x44]') 和sym([x11 x12 x13 x14;x21 x22 x23 x24;x31 x32 x33 x34;x41 x42 x43 x44]) 的意义分别是什么 这与直接定义矩阵又有什么不同
用lingo解决线性问题为什么多了个变量min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;x11+x12+x13+x14=50;x21+x22+x23+x24=60;x31+x32+x33=50;x11+x21x3110;求解出来多了一个变量
min @abs(x21+x31-2/3)+@abs(x22+x32+x42-5/3)+@abs(x33+x43-2/3) x21+x22=1; x31+x32+x33=1; x42+x43=1帮我编下 (还有 x 不是零就是1)
22x22=484 222x22=4884 .总结规律是总结规律,是汉字的!