矩阵A的秩=1,证明A特征值有n-1个0?矩阵A的秩=1,证明A特征值有n-1个0,还有一个特征值是对角元之和你说详细点好吗,这个图说明什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 22:25:26

矩阵A的秩=1,证明A特征值有n-1个0?矩阵A的秩=1,证明A特征值有n-1个0,还有一个特征值是对角元之和你说详细点好吗,这个图说明什么?
矩阵A的秩=1,证明A特征值有n-1个0?
矩阵A的秩=1,证明A特征值有n-1个0,还有一个特征值是对角元之和
你说详细点好吗,这个图说明什么?

矩阵A的秩=1,证明A特征值有n-1个0?矩阵A的秩=1,证明A特征值有n-1个0,还有一个特征值是对角元之和你说详细点好吗,这个图说明什么?
A特征值有n-1个0,还有一个特征值是对角元之和

矩阵A的秩=1,证明A特征值有n-1个0?矩阵A的秩=1,证明A特征值有n-1个0,还有一个特征值是对角元之和你说详细点好吗,这个图说明什么? 证明:如果n*n阶方阵A有个n个不同的特征值b1--bn,那么对应每个特征值bi,矩阵A-bi的秩为n-1 如果N阶矩阵A满足A^2=A,则称A是幂等矩阵.证明幂等矩阵的特征值只能是0或1 如n阶矩阵A满足A2=A,证明:A的特征值只能为0或-1 n阶矩阵A满足A^k=0,证明:A的特征值为0 A.B都是n级矩阵,A,B有相同的特征值,且这n个特征值互不相同,证明,存在n级矩阵P,Q使A=PQ,B=QP 设n阶矩阵A满足A的2次方=E,证明A的特征值只能是正负1 大学题目 线性代数 设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0 设n阶矩阵A满足 AT A=I,detA=-1,证明-1是A的一个特征值. A=URU∧T(矩阵舒尔分解),U为正交矩阵,R为上三角矩阵U为正交矩阵,R为上三角,证明:若方阵A有n个实特征值,则A有舒尔分解,证明思路是:设u1是相对λ1的单位特征向量,U=[u1 u2 … un]是正交矩阵,这 设N阶矩阵A满足A平方=E 证明A的特征值只能是正负1 设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值 设A,B均为n阶矩阵,且AB=BA,证明: 1)如果A有n个不同的特征值,则B相似于对角矩阵;2)如果A,B都相似与对角矩阵,则存在非奇异矩阵P,使得P-1AP与P-1BP均为对角矩阵. 设n阶方阵的秩小于n-1试证明A的伴随矩阵A*的特征值只能是0 设n阶矩阵A满足A^2-3A+2I=0,证明A的特征值只能取1或2, 如图,对角矩阵A的特征值有几个,是否所有n阶矩阵都有n个特征值 若n阶矩阵A有n个属于特征值1的线性无关的向量,怎么证此时A为n阶单位矩阵. 设n阶矩阵A有n个特征值0,1,2,...,n-1,且矩阵B~A,求det(I+B)