如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:46:56

如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);
(3)在点E从B向O运动的过程中,完成下面问题:
①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;
②当DE经过点O时,请你写出t的值(一定要有过程).

如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速
(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= AB2-OA2=4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ {3k+b=0b=4.解得 {k=-43b=4.
∴直线AB的解析式为 y=-43x+4;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 QF/BO=AQ/AB.
∴ QF/4= t/5.
∴QF= 4/5t,
∴S= 1/2(3-t)• 4/5t,
∴S=- 2/5t2+ 6/5t;
(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 AQ/AO=AP/AB.
∴ t/3= 3-t/5.
解得t= 9/8;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 AQ/AB=AP/AO.
即 t/5= 3-t/3.
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= 15/8;
(4)t= 5/2或t= 45/14.

(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= AB2-OA2=4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ {3k+b=0b=4.解得 {k=-43b=4.
∴直线AB的解析式为 y=-43x+4;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△A...

全部展开

(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= AB2-OA2=4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ {3k+b=0b=4.解得 {k=-43b=4.
∴直线AB的解析式为 y=-43x+4;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 QF/BO=AQ/AB.
∴ QF/4= t/5.
∴QF= 4/5t,
∴S= 1/2(3-t)• 4/5t,
∴S=- 2/5t2+ 6/5t;
(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 AQ/AO=AP/AB.
∴ t/3= 3-t/5.
解得t= 9/8;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 AQ/AB=AP/AO.
即 t/5= 3-t/3.
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= 15/8;
(4)t= 5/2或t= 45/14.

收起

(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= =4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ 解得∴直线AB的解析式为 ;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 .
∴ = .
∴QF= t,
∴S= (3-t)...

全部展开

(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= =4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ 解得∴直线AB的解析式为 ;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 .
∴ = .
∴QF= t,
∴S= (3-t)• t,
∴S=- t2+ t;
(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 .
∴ = .
解得t= ;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 .
即 = .
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= ;
(4)t= 或t= .

收起

最后一问: 分两种情况(1)当P由O向A运动时,OP=AQ=t,OQ=OP,则OQ=AQ,所以角QOA=角QAO,进而推出角B=角BOQ,所以BQ=OQ,即5-t=t,t=5/2
(2)当P由A向O运动时,OQ=OP,所以OQ方=OP方.过Q点作QM⊥OB于M。OP=6-T,QM与MO通过三角形相似用含t 的式子表示出来。QM=3-3/5t,MO=4/5t,则OP方=(6-t)方,OQ方=...

全部展开

最后一问: 分两种情况(1)当P由O向A运动时,OP=AQ=t,OQ=OP,则OQ=AQ,所以角QOA=角QAO,进而推出角B=角BOQ,所以BQ=OQ,即5-t=t,t=5/2
(2)当P由A向O运动时,OQ=OP,所以OQ方=OP方.过Q点作QM⊥OB于M。OP=6-T,QM与MO通过三角形相似用含t 的式子表示出来。QM=3-3/5t,MO=4/5t,则OP方=(6-t)方,OQ方=QM方+MO方,从而解出t=45/14

收起

(1)首先由在Rt△AOB中,OA=3,AB=5,,求得OB的值,然后利用待定系数法即可求得二次函数的解析式;
(2)过点Q作QF⊥AO于点F,由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得△APQ的面积S与t之间的函数关系式;
(3)①分别从DE∥QB与PQ∥BO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知...

全部展开

(1)首先由在Rt△AOB中,OA=3,AB=5,,求得OB的值,然后利用待定系数法即可求得二次函数的解析式;
(2)过点Q作QF⊥AO于点F,由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得△APQ的面积S与t之间的函数关系式;
(3)①分别从DE∥QB与PQ∥BO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知即OP=OD时,则列方程即可求得t的值.(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= =4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ 解得
∴直线AB的解析式为 ;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 .
∴ = .
∴QF= t,
∴S= (3-t)• t,
∴S=- t2+ t;
(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 .
∴ = .
解得t= ;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 .
即 = .
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= ;
(4)t= 或t= .

收起

(1)首先由在Rt△AOB中,OA=3,AB=5,,求得OB的值,然后利用待定系数法即可求得二次函数的解析式;
(2)过点Q作QF⊥AO于点F,由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得△APQ的面积S与t之间的函数关系式;
(3)①分别从DE∥QB与PQ∥BO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知...

全部展开

(1)首先由在Rt△AOB中,OA=3,AB=5,,求得OB的值,然后利用待定系数法即可求得二次函数的解析式;
(2)过点Q作QF⊥AO于点F,由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得△APQ的面积S与t之间的函数关系式;
(3)①分别从DE∥QB与PQ∥BO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知即OP=OD时,则列方程即可求得t的值.(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= =4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ 解得
∴直线AB的解析式为 ;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 .
∴ = .
∴QF= t,
∴S= (3-t)• t,
∴S=- t2+ t;
(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 .
∴ = .
解得t= ;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 .
即 = .
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= ;
(4)t= 或t= .

收起

如图,在平面直角坐标系xoy中 如图在平面直角坐标系XOY中一次函数 在平面直角坐标系XOY中,点A在X轴正半轴上,直线AB的倾斜角 如图 在平面直角坐标系xoy中 直线y=kx+b交x轴于点A 26.(13分)如图,在平面直角坐标系 xoy中, 如图,在平面直角坐标系xoy中,抛物线的解析式是 如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O'与y轴正半轴 如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的⊙O'与y轴正半轴 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC= 23,直线y= 3x-23经过点C如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC= 23,直线y= 3x-23经过点C,交y轴于点G.(2)求顶点在 如图,将平行四边形OABC放置在平面直角坐标系XOY内,已知AB边所在直线的解析式为Y=-X+4 如图,在平面直角坐标系xOy中,直线l1过点A(0,3)且与x轴平行,直线l2:y=3/4x在平面直角坐标系xoy中 ,直线L1在平面直角坐标系xoy中 ,直线L1过点A(0,3),且于X轴平行,直线L2:Y=4分之3X与L1相交于B点,在平面 如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速 如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.……如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速 如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速 如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.……如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速 如图,在平面直角坐标系xoy中,一次函数y=k1x+b 如图,在平面直角坐标系x...如图,在平面直角坐标系xoy中,一次函数y=k1x+b如图,在平面直角坐标系xoy中,一次函数y=k1x+b的图像与反比例函数y=k2/x(x>0)的 如图,在平面直角坐标系XOY中,矩形ABCD的ab边在X轴上,且AB=3,AD=2,经过点C如图,在平面直角坐标系xoy中,矩形ABCD的AB边在x轴上,且AB=3,AD=2,经过点C的直线Y=X-2 与x轴、y轴分别交于点E、F.(1)求矩形ABCD 如图,在平面直角坐标系xoy中,一次函数y=-3/4x+3与x轴,y轴分别交于点A,B,则原点O到直线AB的距离为_____