已知等差数列{an}的首项a1为a(a∈R,a≠0).设数列的前n项和为Sn,且对任意正整数n都有且对任意正整数都有a2n/an=(4n-1)/(2n-1).(1)求数列{an}的通项公式及Sn(2)是否存在正整数n和k,使得Sn,Sn+1,Sn+k成等比

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:45:24

已知等差数列{an}的首项a1为a(a∈R,a≠0).设数列的前n项和为Sn,且对任意正整数n都有且对任意正整数都有a2n/an=(4n-1)/(2n-1).(1)求数列{an}的通项公式及Sn(2)是否存在正整数n和k,使得Sn,Sn+1,Sn+k成等比
已知等差数列{an}的首项a1为a(a∈R,a≠0).设数列的前n项和为Sn,且对任意正整数n都有
且对任意正整数都有a2n/an=(4n-1)/(2n-1).
(1)求数列{an}的通项公式及Sn
(2)是否存在正整数n和k,使得Sn,Sn+1,Sn+k成等比数列?若存在,求出n和k的值,若不存在,请说明理由.

已知等差数列{an}的首项a1为a(a∈R,a≠0).设数列的前n项和为Sn,且对任意正整数n都有且对任意正整数都有a2n/an=(4n-1)/(2n-1).(1)求数列{an}的通项公式及Sn(2)是否存在正整数n和k,使得Sn,Sn+1,Sn+k成等比
a(2n)=a1+(2n-1)d
an=a1+(n-1)d
即:(a1+(2n-1)d)/(a1+(n-1)d)=(4n-1)/(2n-1)
即:(2n-1)(a1+(2n-1)d)=(4n-1)(a1+(n-1)d)
即:2na1=nd,即:d=2a1=2a
1
{an}通项:an=a1+(n-1)d=a+2(n-1)a=(2n-1)a
Sn=na1+n(n-1)d/2=na+n(n-1)a=n^2a
2
若Sn、Sn+1、Sn+k成等比数列,则:
Sn+1/Sn=(n+1)^2/n^2=Sn+k/Sn+1=(n+k)^2/(n+1)^2
即:(n+1)/n=(n+k)/(n+1)
即:(n+1)^2=n^2+kn
即:kn=2n+1,即:k=2+1/n
k要为正整数,n=1,即:k=3
故:n=1,k=3

已知等差数列{an}的首项a1 已知数列{log2(an-1)},(n∈N* )为等差数列,且a1=3,a3=9(1)求数列{an}的通项公式 .(2)证明 (1/a2-a1)+(1/a3-a2)+.+[1/a(n+1)-an] 已知等差数列{an}的公差为b,等比数列{bn}的公差为a,且a1=b1=a,a...已知等差数列{an}的公差为b,等比数列{bn}的公差为a,且a1=b1=a,a2=b2,a1,a2,a4,成等比.求数列{an}{bn}的通项公式 已知数列{An},{Bn}都是公差为1的等差数列,其首项分别为a1,b1,且a1+b1=5(a1,b1属于正整数).设Cn=A(Bn)(n已知数列{An},{Bn}都是公差为1的等差数列,其首项分别为a1,b1,且a1+b1=5(a1,b1属于正整数)。设Cn=A(B 已知数列{an}为等差数列,且a1=2,a1+a2+a3=12 令bn=3^a n,求数列{bn}的前n项和 【紧急--高一数学】已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项 (高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项公式(2 已知等差数列an的首项为a,公差为b,{bn}是首项为b,公比为a的等比数列,若a1=b1,a2=b2,求an,bn的通项公式已知等差数列{an}的首项为a,公差为b,{bn}是首项为b,公比为a的等比数列,若a1=b1,a2=b2,求{an},{bn}的 设(an)为等差数列,其公差0不等於d.已知a1,a3和a7为一等比数列中的连续三项,且a1+a3+a7=70.(a)求此等差数列的首项a1及公差D(b)求最小的n使得a1+a2+...+an>=2007 设{ak}为等差数列.已知a1+a2+a3=33, a(n-2)+a(n-1)+an=153 a1+a2+.+an=403 n为某个正整数 求n,a1,公差d设{ak}为一个等差数列.已知a1+a2+a3=33, a(n-2)+a(n-1)+an=153 a1+a2+.+an=403 n为某个正整数 求n,求数列首项a1,公差d 已知数列an满足(an+1-an)(an+1+an)=9),且a1=2,a>0.求证:{an²}为等差数列求{an}的通项公式. ☆☆简单题干,求证等差数列的,急!已知数列{an}满足 a1=1, an*a(n+1) + 2a(n+1) + 1 = 0 (n∈N+),求数列{1/(an + 1)}为等差数列 已知an为等差数列a1等于a a2等于2a减1 a3等于3减a求它的通项公式速回 设数列{an}的首项a1=1,且{a(n+1)-an}是首项为3,公差为2的等差数列,求{an} 已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a,其中a、b都是大于1的正整数,且a1 已知an为等差数列,且a1+a2+...+a100=A,an-99+an-98+...+an=B 已知等差数列[an]的公差不为零,a1=25,且a1,a11,a13成等比数列.⑴求[an]的通项公式;⑵求a1+a4+a7+...+a 3n-2. 已知公差不为0的等差数列{An}的首项A1=1,前n项和为Sn,若数列{Sn/An}是等差数列,求An?