向量a(4cosA,sinA)向量b(sinB,4cosB)若tanA+tanB=16,求证:向量a平行向量b 会的进 不会的不要乱COPY是tanA+tanB=16 不是tanAtanB=16 各位大哥大姐看好
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:59:55
向量a(4cosA,sinA)向量b(sinB,4cosB)若tanA+tanB=16,求证:向量a平行向量b 会的进 不会的不要乱COPY是tanA+tanB=16 不是tanAtanB=16 各位大哥大姐看好
向量a(4cosA,sinA)向量b(sinB,4cosB)若tanA+tanB=16,求证:向量a平行向量b
会的进 不会的不要乱COPY
是tanA+tanB=16 不是tanAtanB=16 各位大哥大姐看好
向量a(4cosA,sinA)向量b(sinB,4cosB)若tanA+tanB=16,求证:向量a平行向量b 会的进 不会的不要乱COPY是tanA+tanB=16 不是tanAtanB=16 各位大哥大姐看好
题目肯定错了,要不然不可能算不出来的!
要证明向量a平行向量b,肯定是利用X1y2-X2y1=0来证明
所以要证明
16=0
将tanA+tanB=16代进上式,得
(tanA+tanB)·cosAcosB-sinAsinB=sin(A+B)-sinAsinB
即要证明sin(A+B)一sinAsinB=0
但sin(A+B)能等于sinAsinB吗?
即证sinAsinB=sinA+B
a点积b=4sin(A+B)
由|a|^2X|b|^2Xcos夹角^2=(a点积b)^2
再将16=sin(A+B)/COSAXCOSB代入
(计算过程略)
若要证明向量a平行向量b,只要证明
cosAcosB(sin(A+B)+SINA^2SINB^2/SIN(A+B))=2COSA COSB SINA SINB
而由不等式可得,只有一种情况下成立...
全部展开
a点积b=4sin(A+B)
由|a|^2X|b|^2Xcos夹角^2=(a点积b)^2
再将16=sin(A+B)/COSAXCOSB代入
(计算过程略)
若要证明向量a平行向量b,只要证明
cosAcosB(sin(A+B)+SINA^2SINB^2/SIN(A+B))=2COSA COSB SINA SINB
而由不等式可得,只有一种情况下成立,所以我觉得题目有问题。
收起
神马情况?汗。。。。。。
tanAtanB=16 所以(sinA/cosA)(sinB/cosB)=16
sinAsinB=16cosAcosB
4cosA/sinB=sinA/4cosB
所以a b平行