Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.1)求B点的坐标

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:30:06

Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.1)求B点的坐标
Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
1)求B点的坐标

Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.1)求B点的坐标
设B点的坐标为(X,Y)
过点B作BC⊥OA,垂足为C,
由题意可知:OC=X,CA=OA-OC=10-X,BC=Y,
在Rt△OAB中,
∵∠OBA=90°,BC⊥OA,
∴利用射影定理可得:BC^2=OC×CA,
∴Y^2=X(10-X)
又∵S△OAB=1/2×10×Y=20
∴Y=4,
把Y=4代入Y^2=X(10-X)中,得:
16=X(10-X)
X^2-10X+16=0
(X-2)(X-8)=0
∴X1=2,X2=8,
∴点B的坐标为(2,4)或(8,4).

由题意可知,S=1/2*OA*Y即Y=4,根据直角三角形的性质可知X*(10-X)=4*4即可得X=2或X=8即B(2,4)或(8,4)

由B点向X轴作垂线,交X轴于点C。如果把OA看成是三角形OAB的底,根据面积就可以求出高BC,这条高在数值上就等于B点的纵坐标。BC=Y=20*2/10=4.
在根据射影定理,
BC^2=OC*CA
且OC+CA=OA=10
两个方程联立可以求出OC=8,AC=2或者AC=8,OC=2
所以B坐标为(8,4)或者(2,4)...

全部展开

由B点向X轴作垂线,交X轴于点C。如果把OA看成是三角形OAB的底,根据面积就可以求出高BC,这条高在数值上就等于B点的纵坐标。BC=Y=20*2/10=4.
在根据射影定理,
BC^2=OC*CA
且OC+CA=OA=10
两个方程联立可以求出OC=8,AC=2或者AC=8,OC=2
所以B坐标为(8,4)或者(2,4)

收起

如图所示,Rt△OAB的斜边OA在x轴上的正半轴上,直角顶点B在第四象限 Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.1)求B点的坐标 如图所示,Rt△OAB的斜边OA在x轴上的正半轴上,直角顶点B在第四象限内,S△OAB=20,OB:BA=1:2,求A、B两点的坐标. RT三角形OAB的斜边在X轴的正半轴上,直角顶点A在第四象限内,已知△OAB=20,OA:AB=1:2,求A.B两点的坐标 如图,已知在RT△OAB中,斜边OB在x轴的正半轴上,直角顶点A在第四象限内,S△OAB=20,OA:OB=1:2,求A,B如下图,已知在RT△OAB中,斜边OB在x轴的正半轴上,直角顶点A在第四象限内,S△OAB=20,OA:OB=1:2,求A,B两 如图,已知在RT△OAB中,斜边OB在x轴的正半轴上,直角顶点A在第四象限内,S△OAB=20,OA:OB=1:2,求A,B如下图,已知在RT△OAB中,斜边OB在x轴的正半轴上,直角顶点A在第四象限内,S△OAB=20,OA:OB=1:2,求A,B两 如图,在平面直角坐标系中,点O为坐标原点,Rt△OAB的斜边OA(2009•沈阳)如图,在平面直角坐标系中,点O为坐标原点.Rt△OAB的斜边OA在x轴的正半轴上,点A的坐标为(2,0),点B在第一象限内,且OB 已知Rt△OAB的斜边OA在x轴的正半轴上,直角顶点B在第一象限,OA=10,OB= ,抛物线经过O、A、B三点. (1 如图所示,Rt△OAB的斜边OA在x轴上的正半轴上,直角顶点B在第四象限内,S△OAB=20OA:OB=1:2,求A、B两点的坐标.是OB:BA=1:2 数学题如图,在平面直角坐标系中,RT△OAB的斜边OA在X轴上,点B在第一象限,如图,在平面直角坐标系中,RT△OAB的斜边OA在X轴上,点B在第一象限,OA:OB=5:4,AB的垂直平分线分别交AB,X轴于点C,D,线段CD交反 如图,在平面直角坐标系中,点O为坐标原点,Rt△OAB的斜边OA在X轴的正半轴上,点B在第一象限内,∠OAB=90°∠BOA=30 °以OB所在直线折叠Rt△OAB,使点A落在点C(2,2√3)处.①求证:△OAC为等边三角形; 如图,在平面直角坐标系中,点O为坐标原点,Rt△OAB的斜边OA在X轴的正半轴上,点A坐标A(2,0),点B在第一象限内,且OB=√3,∠OBA=90°.以边OB所在直线折叠Rt△OAB,使点A落在点C处.求证:△OAC为等边三角形 5、如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.(1)求B点的坐标;(2)求过O、B、A三点抛物线的解析式;(3)判断该抛物线的顶点P与△O 数学题一个,已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2√3 ,若以O为坐标原点,OA所在直线已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2√3,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐 如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度,把Rt△OAB沿x轴正方向平移1如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度,把Rt△OAB沿x轴正方向平 如图,在平面直角坐标系中,Rt△OAB的直角边OA在x轴的正半轴上,点B在第象限,将△OAB绕点O按逆时针方向旋将△OAB绕点O按逆时针方向旋转至△OA′B′,使点B的对应点B′落在y轴的正半轴上,已知OB=2, 线段和的最小值如图 在平面直角坐标系中,RT△OAB的直角顶点A在x轴正半轴上,其中B(4,3),点C和点P分别为直角边OA、斜边OB上的动点,则PA+PC的最小值为? 如图,等腰Rt△ABC的斜边BC在x轴上,顶点A在反比例函数y=3/x(x>0)的图像上连接OA,则OC²-OA²=()