设直线y=-n/n+1X+√2/n+1(n为正整数)与两坐标轴围成的三角形面积为sn(n=1,2,……,2009),则s1+s2+s3+……+s2009的值为多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:49:32
设直线y=-n/n+1X+√2/n+1(n为正整数)与两坐标轴围成的三角形面积为sn(n=1,2,……,2009),则s1+s2+s3+……+s2009的值为多少?
设直线y=-n/n+1X+√2/n+1(n为正整数)与两坐标轴围成的三角形面积为sn(n=1,2,……,2009),则s1+s2+s3+……+s2009的值为多少?
设直线y=-n/n+1X+√2/n+1(n为正整数)与两坐标轴围成的三角形面积为sn(n=1,2,……,2009),则s1+s2+s3+……+s2009的值为多少?
当X=0时 Y=√2/(n+1)
当Y=0时
nx/(n+1)=√2/(n+1)
x=√2/n
Sn=1/2 *x *y=1/2 *√2/n*√2/(n+1)=1/n(n+1)
所以S1+S2+S3+.S2009
=1/1*2+1/2*3+1/3*4+.1/2009*2010
=1-1/2 +1/2-1/3+1/3-1/4+.1/2009-1/2010
=1-1/2010
=2009/2010
直线y=-n/n+1X+√2/n+1(n为正整数)与两坐标轴的交点为
(0,√2/(n+1)),(√2/n,0).
因为n为正整数,则直线与两坐标轴围成的三角形面积为
sn=1/2*√2/(n+1)*√2/n=1/n*(n+1)=1/n+1/(n+1).
则s1+s2+s3+……+s2009
=(1-1/2)+(1/2-1/3)+1(/2+1/3)+…+(...
全部展开
直线y=-n/n+1X+√2/n+1(n为正整数)与两坐标轴的交点为
(0,√2/(n+1)),(√2/n,0).
因为n为正整数,则直线与两坐标轴围成的三角形面积为
sn=1/2*√2/(n+1)*√2/n=1/n*(n+1)=1/n+1/(n+1).
则s1+s2+s3+……+s2009
=(1-1/2)+(1/2-1/3)+1(/2+1/3)+…+(1/2009-1/2010)
=1-1/2010
=2009/2010.
收起