等差数列{an},如果有正整数k和i,k≠i,使前k项之和Sk=k/i,Si=i/k,则S(i+k)=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:53:14
等差数列{an},如果有正整数k和i,k≠i,使前k项之和Sk=k/i,Si=i/k,则S(i+k)=?
等差数列{an},如果有正整数k和i,k≠i,使前k项之和Sk=k/i,Si=i/k,则S(i+k)=?
等差数列{an},如果有正整数k和i,k≠i,使前k项之和Sk=k/i,Si=i/k,则S(i+k)=?
设数列首项为 a1 ,公差为 d ,
则 Sk=ka1+k(k-1)d/2=k/i ,
Si=ia1+i(i-1)d/2=i/k ,
因此得 a1+(k-1)d/2=1/i ,a1+(i-1)d/2=1/k ,
解得 a1=1/(k*i) ,d=2/(k*i) ,
所以 S(k+i)=(k+i)a1+(k+i)(k+i-1)d/2=(k+i)^2/(k*i) .
(进一步可化为 k/i+i/k+2=Sk+Si+2)
设公差为d。
Sk=ka1+k(k-1)d/2=k/i
a1+(k-1)d/2=1/i (1)
Si=ia1+i(i-1)d/2=i/k
a1+(i-1)d/2=1/k (2)
(1)-(2)
(k-i)d/2=1/i -1/k
(k-i)d/2=(k-i)/(...
全部展开
设公差为d。
Sk=ka1+k(k-1)d/2=k/i
a1+(k-1)d/2=1/i (1)
Si=ia1+i(i-1)d/2=i/k
a1+(i-1)d/2=1/k (2)
(1)-(2)
(k-i)d/2=1/i -1/k
(k-i)d/2=(k-i)/(ik)
k≠i,k-i≠0
等式两边同除以k-i
d/2=1/(ik)
d=2/(ik),代入(1)
a1=1/i -(k-1)d/2=1/i -(k-1)/(ik)=1/(ik)
S(i+k)=(i+k)a1+(i+k)(i+k-1)d/2
=(i+k)/(ik) +(i+k)(i+k-1)/(ik)
=k/i +i/k +2
收起
当时没在线,不好意思!