设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切则m+n的取值范围是、用基本不等式不是要正数用基本不等式不是要正数么.怎么可以用呢?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:28:12
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切则m+n的取值范围是、用基本不等式不是要正数用基本不等式不是要正数么.怎么可以用呢?
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切则m+n的取值范围是、用基本不等式不是要正数
用基本不等式不是要正数么.怎么可以用呢?
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切则m+n的取值范围是、用基本不等式不是要正数用基本不等式不是要正数么.怎么可以用呢?
圆心(1,1)半径为1
因为相切
所以由距离公式得
|m+1+n+1-2|/√[(m+1)²+(n+1)²]=1
m^2+2m+1+n^2+2n+1=(m+n)^2
m^2+2m+1+n^2+2n+1=m^2+2mn+n^2
化简得2mn=2(m+n)+2
m+n+1=mn
因为(m-n)^2≥0
m^2-2mn+n^2≥0
m^2+n^2≥2mn
m^2+2mn+n^2≥4mn
(m+n)^2≥4mn
mn≤(m+n)^2/4
令m+n=t,则有t+1≤ t²/4
即t²-4t-4≥ 0
解得t≥ 2+2√2或t ≤2-2√2
∴m+n的取值范围是(-∞,2-2√2]∪[2+2√2,+∞).
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)²+(y-1)²=1相切,则m+n的取值范围是?
设m,n∈R,若直线m+1x+n+1y-2=0与圆x-12+y-12=1相切,则m+n的取值范围
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切,则m+n的取值范围是?这里用基本不等式(m+n)^2/4>=mn不用m、n属于R+么
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切,则m+n的取值范围是?答案是m+n≤2-2倍根号2或m+n≥2+2倍根号2
设m,n属于R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切,则m+n的取值范围是
设m、n∈R+,且m≠n,求证:(m-n)/(ln m-ln n) < (m+n)/2.
设集合M={x|x=2n+1,n∈N},N={x|x=3n,n∈N},则M∩N=
设集合M={x|x-m≤0},N={y|y=x²-1,x∈R},若M∩N=∅,则实数m的范围是——
设集合M={x|f(x)=x},集合N{x|f(f(x))=x},若已知函数y=f(x)是R上的增函数,记|M|,|N|是M,N中元素的个数,则下列判断一定正确的是A、|M|=|N| B、|M|>|N| C、|M|<|N| D、||M|-|N||=1
M={x|x=3m+1,m∈R} N={y|y=3n+2,n∈R} 若a∈M b∈N 则ab与集合M.N关系是
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)^2+(y-1)^2=1相切则m+n的取值范围是、用基本不等式不是要正数用基本不等式不是要正数么.怎么可以用呢?
对于集合M,N定义M-N={x/x∈M且x不属于N},M△N=(M-N)∪(N-M)设M={y/y=x²-4x,x∈R},N={y/y=-2的x次方,x∈R}则M△N=
设集合M={x|y=根号(3-x)},N={y|y=x^2-1,x∈R},则M∩N
设集合M={y|y=x²-3,x∈R},N={y|y=-2x²+1,x∈R},求M∩N,M∪N
设集合M={x|-2〈x〈5},N={x|2-t〈x〈2t+1,t∈R},若M∩N=N,求实数t的取值范围.
设集合M={x|-2〈x〈5},N={x|2-t〈x〈2t+1,t∈R},若M∩N=N,求实数t的取值范围.
设f(x)=x^2+px+q(p,q∈R),M={x|x=f(x)},N={x|x=f[f(x)]},M包含于N,当M={-1,3},求N.
设全集为R,集合M={x|2x>x+3},N={x|-1