已知直线L过点M:(1,1),且与椭圆X^2/4+Y^2/3=1相交于的A,B两点.若AB的中点为M,求直线L的方程.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:03:22
已知直线L过点M:(1,1),且与椭圆X^2/4+Y^2/3=1相交于的A,B两点.若AB的中点为M,求直线L的方程.
已知直线L过点M:(1,1),且与椭圆X^2/4+Y^2/3=1相交于的A,B两点.若AB的中点为M,求直线L的方程.
已知直线L过点M:(1,1),且与椭圆X^2/4+Y^2/3=1相交于的A,B两点.若AB的中点为M,求直线L的方程.
因为直线过点M,设直线为y-1=k(x-1)
与椭圆相交,则把直线与椭圆连立成方程组,约掉y则:
(3+4k^2)X^2-8k^2 X+8kX+4k^2-8k-8=0
则:x1+x2=(8k^2-8k)/(3+4k^2)=2(中点横坐标为1)
k=-3/4
y:-3/4(x-1)+1
因为直线过点M,设直线为y-1=k(x-1)
与椭圆相交,则把直线与椭圆连立成方程组,约掉y则:
(3+4k^2)X^2-8k^2 X+8kX+4k^2-8k-8=0
则:x1+x2=(8k^2-8k)/(3+4k^2)=2(中点横坐标为1)
k=...
自己做吧,呵呵
已知直线L过点M:(1,1),且与椭圆X^2/4+Y^2/3=1相交于的A,B两点.若AB的中点为M,求直线L的方程.
已知中心在原点,焦点在轴上x的椭圆C的离心率为0.5,且经过点(-1,1.5).求椭圆C的方程若过点P(2,1)的直线L与椭圆C相切与点M,求直线L的方程以及点M的坐标。
已知椭圆与双曲线4y方/3-4x方=1有公共的焦点,且椭圆过点P( 3/2 ,1 ),1)求椭圆方程.2)直线过点M(-1,1)交椭圆于A.B两点,且AB向量=2倍MB向量,求直线l的方程.
已知中心在原点,焦点在x轴上的椭圆C的离心率为1/2,且经过点(-1,3/2),过点P(2,1)的直线l与椭圆C在第一象限相切于点M.(1)求椭圆C的方程(2)求直线l的方程以及M的坐标
解析几何,椭圆与直线,求证焦点与两点共线已知椭圆x²/6+y²/2=1,左焦点为F(-2,0),直线L过点M(-3,0),且与椭圆交于不同两点A、B,点A关于x轴的对称点为C.求证:B、F、C三点共线.
点M(1,1)在椭圆(X平方/4)+(Y平方/3)=1内,直线L过点M与椭圆交于A,B且M是AB的中点,求L的方程?
已知椭圆C:x2/a2+y2/b2=1.(a>b>0)过点(2,0)且椭圆的离心率为1/2 1.求椭圆c方程2.若动点p在直线x=-1上,若过点作直线交椭圆于M,N两点,且点p为线段MN的中点,再过点p作直线l⊥m证明l恒过定点,证明直线l恒
已知直线L过点(1,2),且与直线m:x-2y+1=0平行.求直线L的方程
已知椭圆方程y^2/2+x^2=1,直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与x轴相交于M,求△MPQ面积最大值
已知过点M(2,1)的直线l和椭圆x^2+4y^2=36相交于点A,B,且线段AB恰好以M为中点,直线l的方程为
L过x2+y2+4x-2y=0的圆心M,且与椭圆x2/9+y2/4=1交与点A、B,且A、B关于点M对称,求直线L的方程
Y已知椭圆方程为y^2/2+x^2=1 ,斜率为k的直线l 过椭圆的上焦点且与椭圆交于点P ,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m) (1) 求m的取值范围 (2) 求三角MPQ面积的最大值、
已知中心在原点,焦点在X轴上的椭圆C的离心率为2分之一且经过点(-1,2分之3)1、求椭圆C的方程.2、若过点P(2,1)的直线L与椭圆C相切与点M,求直线L的方程以及点M的坐标.1、第一问我求出椭圆
已知椭圆C:X²+Y²/4=1过点M(0,1)的直线L于椭圆C相交于A,B两点若L与x轴相交于点p,且p为AM中点求L的方程已知N(0,1/2)求向量NA+向量NB的最大值?
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为根号3/2,过点(0,3)的直线l与椭圆C交与两点A,B.1 求方程2 若以AB为直径的圆恰好经过椭圆C的上顶点M,求此时l的方程.
已知椭圆C;x²/a²+y²/b²=1(a>b>0)的离心率为1/2,直线l过点A(4,0)B(0,2)且与椭圆C相切与点P (1)求椭圆C的方程(2)是否存在过点A(4,0)的直线m与椭圆C相交于不同的两点M,
一道关于圆锥曲线方程--椭圆--的大题.已知椭圆C:x^2+(y^2)/4=1,过点M(0,3)的直线l与椭圆C交于不同的两点A,B(1)若l与x轴交于点N,且A是MN中点,求l的方程;(2)设P为椭圆上一点,且向量OA+向量OB=λ向量OP(O
已知椭圆的中心在原点,焦点在x轴上,离心率为3 2 ,且经过点M(4,1).直线l:y=x+m交椭圆于A,B两不同的点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线l不过点M,求证:直线MA,MB与x轴围成等腰三角形.