已知中心在原点,焦点在X轴上的椭圆C的离心率为2分之一且经过点(-1,2分之3)1、求椭圆C的方程.2、若过点P(2,1)的直线L与椭圆C相切与点M,求直线L的方程以及点M的坐标.1、第一问我求出椭圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:48:49

已知中心在原点,焦点在X轴上的椭圆C的离心率为2分之一且经过点(-1,2分之3)1、求椭圆C的方程.2、若过点P(2,1)的直线L与椭圆C相切与点M,求直线L的方程以及点M的坐标.1、第一问我求出椭圆
已知中心在原点,焦点在X轴上的椭圆C的离心率为2分之一且经过点(-1,2分之3)
1、求椭圆C的方程.
2、若过点P(2,1)的直线L与椭圆C相切与点M,求直线L的方程以及点M的坐标.
1、第一问我求出椭圆C的方程为:x方比4+y方比3=1,
2、我做的方法和网上的不一样,但我认为对.但是答案却和网上的不符.
(我说下我的思路):既然直线L与椭圆C相切,所以肯定是唯一的点M了,所以他在椭圆C上.那么我设M点坐标为(x1,y1)所以x1方比4+y1方比3=1 又因为椭圆的性质,椭圆上一点到两个焦点的距离之和为2a.所以|MF1|+|MF2|=2a 因上问求出a方=4所以2a=4
两个方程联立,我求出x1=4,但带入x1方比4+y方比3=1时却求取y1方=-9怎么会出负数?但是我算了5,6边了计算没有问题,

已知中心在原点,焦点在X轴上的椭圆C的离心率为2分之一且经过点(-1,2分之3)1、求椭圆C的方程.2、若过点P(2,1)的直线L与椭圆C相切与点M,求直线L的方程以及点M的坐标.1、第一问我求出椭圆
1/
x^2/4c^2+y^2/3c^2=1 将(-1,3/2)代入
1/4c^2+3/4c^2=1
c^2=1
x^2/4+y^2/3=1
你做对了.
2/
P点在椭圆外,可以作出两条切线,所以M不是唯一的.
另外,长轴端点是2,也就是椭圆上点横坐标在[-2,2]之间,不可能为4
你的过程明显有问题.
你说两个方程联立,是哪两个方程?
x1方比4+y1方比3=1 与 |MF1|+|MF2|=2a=4 么?
错了.这两个方程是同一个方程.都代表这个椭圆,联立是没有意义的.
要联立的话,是联立直线方程和椭圆方程.
设直线方程为y=kx+b,
将(2,1)代入,得b=1-2k
直线为 y=kx+1-2k
与x^2/4+y^2/3=1 联立.,得二次方程:
(3+4k^2)x^2+8k(1-2k)x+16k^2-16k-8=0
因为相切,只有一个公共点,此方程只有一个解,判别式=0
64k^2*(1-2k)^2-4(3+4k^2)(16k^2-16k-8)=0
(看上去有点吓人,其实是一次方程,都约了)
解得k=-1/2
直线方程为: y=-1/2x+2, M(1,3/2)
还有另一条切线: x=2, M(2,0)