不等式证明,1/(n+1)+1/(n+2)+1/(n+3)+..+1/3n>4n/(4n+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:12:12
不等式证明,1/(n+1)+1/(n+2)+1/(n+3)+..+1/3n>4n/(4n+1)
不等式证明,
1/(n+1)+1/(n+2)+1/(n+3)+..+1/3n>4n/(4n+1)
不等式证明,1/(n+1)+1/(n+2)+1/(n+3)+..+1/3n>4n/(4n+1)
缺条件吧,应该n为自然数
1/(n+1) + 1/3n -4/(4n+1) = [3n(4n+1)+(n+1)(4n+1)-12n(n+1)]/[3n(n+1)(4n+1)]
= (4n^2-4n+1)/[3n(n+1)(4n+1)]=(2n-1)^2/[3n(n+1)(4n+1)] >0
所以:1/(n+1) + 1/3n > 4/(4n+1)
1/(n+2)+1/(3n-1) -4/(4n+1)=[(3n-1)(4n+1)+(n+2)(4n+1)-4(n+2)(3n-1)]/[(n+2)(3n-1)(4n+1)]
=(2n-3)^2/[(n+2)(3n-1)(4n+1)] >0
所以:1/(n+2) + 1/(3n-1) > 4/(4n+1)
同样:1/(n+3) + 1/(3n-2) > 4/(4n+1)
.
1/2n + 1/(2n+1) > 4/(4n+1)
以上共n个不等式相加,得到:
1/(n+1)+1/(n+2)+1/(n+3)+..+1/3n>4n/(4n+1)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
证明不等式 1+2n+3n
证明不等式1/(n+1)
证明不等式 (n+1)/3
证明不等式 3^n>(n+1)!
证明不等式:[(n+1)/e]^(n)
证明对任意的正整数n,不等式In(n+1)/n<(n+1)/n^2证明对任意的正整数n,不等式In(n+1)/n
数学不等式证明:n>2时..logn(n-1)
证明不等式:(1/n)的n次方+(2/n)的n次方+……+(n/n)的n次方
数学归纳法证明不等式证明这个不等式 1/n + 1/(n+1) + 1/(n+2) +...+1/(n^2)>1 (n属于N+,且n>1)
数学不等式证明题n=1,2,……证明:(1/n)^n+(1/2)^n+……+(n/n)^n第二个是(2/n)^n
证明对任意正整数n,不等式ln(1/n+1)>1/n^2-1/n^3
不等式证明,1/(n+1)+1/(n+2)+1/(n+3)+..+1/3n>4n/(4n+1)
证明:不等式(2n+1)的N次方>=(2n)的N次方+(2n-1)的N次方
设n是自然数,证明不等式:(1/n+1) +(1/n+2)+(1/n+3)+……+1/3n
证明不等式 log(n)(n-1) * log(n)(n+1)<1 (n>1)
证明不等式,其中a>1,n>=1a^(1/(n+1))/(n+1)^2
运用Bernoulli不等式证明n√(2)-1<1/n (n>1)