3a4+2a3+3a2+4a-4=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:49:12
3a4+2a3+3a2+4a-4=0
3a4+2a3+3a2+4a-4=0
3a4+2a3+3a2+4a-4=0
授人以鱼不如授人以渔,给你个方法.
一元三次方程的一般形式是
x3+sx2+tx+u=0
如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消
去.所以我们只要考虑形如
x3=px+q
的三次方程.
假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数.
代入方程,我们就有
a3-3a2b+3ab2-b3=p(a-b)+q
整理得到
a3-b3 =(a-b)(p+3ab)+q
由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,
3ab+p=0.这样上式就成为
a3-b3=q
两边各乘以27a3,就得到
27a6-27a3b3=27qa3
由p=-3ab可知
27a6 + p = 27qa3
这是一个关于a3的二次方程,所以可以解得a.进而可解出b和根x.
和三次方程中的做法一样,可以用一个坐标平移来消去四次方程
一般形式中的三次项.所以只要考虑下面形式的一元四次方程:
x4=px2+qx+r
关键在于要利用参数把等式的两边配成完全平方形式.考虑一个参数
a,我们有
(x2+a)2 = (p+2a)x2+qx+r+a2
等式右边是完全平方式当且仅当它的判别式为0,即
q2 = 4(p+2a)(r+a2)
这是一个关于a的三次方程,利用上面一元三次方程的解法,我们可以
解出参数a.这样原方程两边都是完全平方式,开方后就是一个关于x
的一元二次方程,于是就可以解出原方程的根x.
设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+4a4,则方程Ax=b的通解为
设A=(a1,a2,a3,a4),ai(i=1,2,3,4)为5维向量,若a2,a3,a4线性无关,且a4=a1+2a2-a3,求方程组Ax=0的通解
设A=(a1,a2,a3,a4),ai(i=1,2,3,4)为5维列向量,若a2,a3,a4线性无关,且a4=a1+2a2-a3,求方程组AX=0的通解
线性相关性问题1设向量组a1=(1,4,1,0),a2=(2,1,-1,-3),a3=(1,0,-3,-1),a4=(0,2,-6,3),则().A.a1,a2,a3,a4线性无关B.a1,a2,a3,a4线性相关C.a1,a2线性相关D.|(a1,a2,a3,a4)|不等于0
3a4+2a3+3a2+4a-4=0
求教:已知2*a2-3a-5=0,求4*a4-12*a3+9*a2-10的值.a2,a4,a3分别指a的2、4、3幂次方.
已知(x-1)^5=a5x^5+a4^4+a3^3+a2^2+a1^1+a0,则a5+a4+a3+a2+a1+a0=?,-a5+a4-a3+a2-a1+a0=?,a4+a2a4+a2=?
矩阵秩的问题.a为4维列向量r(A)=r(a1,a2,a3,a4)=3a1,a2,a3线性相关如何推出 r(a1,a2,a3,a1+2a2+2a3)=2
已知A={a1,a2,a3,a4,a5},B={a1^2,a2^2,a3^2,a4^2,a5^2},ai属于N*,i=1,2,3,4,5,设a1<a2<a3<a4<a5,且A∩B={a1,a4},a1+a4=10,又AUB元素之和为224,求a1,a4,a5及集合A
a(a4-2a3-3a2-a-1)-a2(1-a-a2)+(a4-a+1)其中a=-根号3
lingo MODEL:sets:banci/1..12/:a1,a2,a3,a4,a5,b;endsetsmin=z;z=@smax(a1(1)+a2(1)+a3(1)+a4(1)+a5(1),a1(2)+a2(2)+a3(2)+a4(2)+a5(2),a1(2)+a2(2)+a3(2)+a4(2)+a5(2),a1(3)+a2(3)+a3(3)+a4(3)+a5(3),a1(4)+a2(4)+a3(4)+a4(4)+a5(4),a1(5)+a2(5)+a3(5)+a4(5)+a5(5),a1
如果向量组A a1,a2,a3 B a1.a2.a3.a4 C a1 a2 a3 a5 又RA=RB=3 RC=4证明Ra1 a2 a3 a5-a4=4
如果向量组A a1,a2,a3 B a1.a2.a3.a4 C a1 a2 a3 a5 又RA=RB=3 RC=4证明Ra1 a2 a3 a5-a4=4
已知(2x+3)的4次方=a0x4次方+a1x3次方+a2x2次方+a3x+a4求a0+a1+a2+a3+a4,a0-a1+a2-a3+a4
已知A=(a1,a2,a3,a4)是四阶矩阵,a1,a2,a3,a4是四维列向量,若方程组Ax=b,的通解是(1,2,2,1)+k(1,-2,4,0),又B=(a3,a2,a1,b-a4),求Bx=a1-a2的通解主要是想知道矩阵B的秩为什么是2,怎么不是1或3
设4阶方阵A通过列分块后为(a1,a2,a3,a4) b是一个4维列向量 且满足a1,a2无关 a1,a2,a3,a4相关且 a1+2a2-a3-a4=0 a4=2a1-a2 a1+a2+a3+a4=b 求Ax=b的通解
已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+2|,a3=-|a2+3|,a4=-|a3+4|,…,依此类推,则a2014的值为______.
已知整数a1,a2,a3,a4...满足下列条件:a1=0,a2=-|a1+2|,a3=-|a2+3|,a4=|a3+4|,...,以此类推.则a8的值为______,则a2013的值为_________.