等差数列公式Sn = a1+a2+...+anSn = a1+(a1+d)+(a1+d+d)+...+[a1+(n-1)d]Sn = a1*n+[1+2+...+(n-1)]*dSn = a1*n+n*(n-1)/2*dSn = a1*n+n*(n-1)*d/2Sn = (a1+an)*n/2an = a1+(n-1)*dSn = [2a1+(n-1)*d]*n/2Sn = a1*n+n*(n-1)*d/2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:07:58
等差数列公式Sn = a1+a2+...+anSn = a1+(a1+d)+(a1+d+d)+...+[a1+(n-1)d]Sn = a1*n+[1+2+...+(n-1)]*dSn = a1*n+n*(n-1)/2*dSn = a1*n+n*(n-1)*d/2Sn = (a1+an)*n/2an = a1+(n-1)*dSn = [2a1+(n-1)*d]*n/2Sn = a1*n+n*(n-1)*d/2
等差数列公式
Sn = a1+a2+...+an
Sn = a1+(a1+d)+(a1+d+d)+...+[a1+(n-1)d]
Sn = a1*n+[1+2+...+(n-1)]*d
Sn = a1*n+n*(n-1)/2*d
Sn = a1*n+n*(n-1)*d/2
Sn = (a1+an)*n/2
an = a1+(n-1)*d
Sn = [2a1+(n-1)*d]*n/2
Sn = a1*n+n*(n-1)*d/2
等差数列公式Sn = a1+a2+...+anSn = a1+(a1+d)+(a1+d+d)+...+[a1+(n-1)d]Sn = a1*n+[1+2+...+(n-1)]*dSn = a1*n+n*(n-1)/2*dSn = a1*n+n*(n-1)*d/2Sn = (a1+an)*n/2an = a1+(n-1)*dSn = [2a1+(n-1)*d]*n/2Sn = a1*n+n*(n-1)*d/2
推倒正确,你的问题是?
在等差数列an中,a1=1.Sn为前n项和,且满足S2n-2Sn=n^2.求a2及an通向公式
设an公差不为0的等差数列.(1)前n项和为Sn,Sn=110,a1.a2.a4为等比数列.求an通项公式.
已知数列{}是等差数列,且a1=2,a1+a2+a3=12,求数列{An}的通项公式及前n项和Sn
等差数列【an】中,a1+a3=12,a2+a4=6求这个数列的通项公式an及前n项和公式Sn
等差数列公式Sn = a1+a2+...+anSn = a1+(a1+d)+(a1+d+d)+...+[a1+(n-1)d]Sn = a1*n+[1+2+...+(n-1)]*dSn = a1*n+n*(n-1)/2*dSn = a1*n+n*(n-1)*d/2Sn = (a1+an)*n/2an = a1+(n-1)*dSn = [2a1+(n-1)*d]*n/2Sn = a1*n+n*(n-1)*d/2
已知等差数列前n项和为Sn= -2n^2-n ,求an通项公式和a1+a2+a3+.+a15=
在等差数列an中公差小于零,a1+a7=10,a2*a6=9, ①求数列通项公式②求Sn最大值
等差数列An中 a1=-21,a2+a21=0 求通项公式?n为何值时 Sn最小 并求其最小值?
已知等差数列{an}的前n项和为sn,a2是a1与a4的等比中项,s3=48,求数列{an}的通公式;
设数列An的前n项和为Sn,满足2Sn=An+1 -2^n+1+1,且A1.A2+5.A3成等差数列 求数列的设数列An的前n项和为Sn,满足2Sn=An+1 -2^n+1+1,且A1.A2+5.A3成等差数列 求数列的通项公式
高中数学 等差数列求和公式Sn=(a1+an)n/2可以判定等差数列吗
设数列{an}的前几项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数列(1)求a1的值(2)求数列{an}的通项公式
设数列an的前n项和为sn,已知s1=1,sn分之sn+1=n分之n+c且a1,a2,a3为等差数列.求c的值.求数列an的通项公式
求高二等差数列的一道证明题.利用等差数列的性质an+am=ap+aq(m+n=p+q)推导等差数列的前n项和公式sn=n(a1+a2)/2
等差数列{an}中a1+a2+a3=27 a6+a7=36 求an与Sn
等差数列An前项和为Sn若a1+a2+a9=24.S9等于多少
1、已知{an}是公差不为0的等差数列,且a2²+a3²=a4²+a5²,a1+3d=1,求{an}通项公式2、已知{an}是等差数列,a1+a3+a5=105,a2+a4+a6=99,Sn代表前n项的和,求Sn最大时n的值3、等差数列中,首项1/
已知Sn为等差数列{an}的前n项和,Sn=12n-n².(1)|a1|+|a2|+|a3|+...+|a10|;(2)求|a1|+|a2|+...+|an|